Journal of Scientific Computing

, Volume 79, Issue 2, pp 1241–1270 | Cite as

Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations

  • Tao Xiong
  • Giovanni Russo
  • Jing-Mei QiuEmail author


In this paper, we propose a mass conservative semi-Lagrangian finite difference scheme for multi-dimensional problems without dimensional splitting. The semi-Lagrangian scheme, based on tracing characteristics backward in time from grid points, does not necessarily conserve the total mass. To ensure mass conservation, we propose a conservative correction procedure based on a flux difference form. Such procedure guarantees local mass conservation, while introducing time step constraints for stability. We theoretically investigate such stability constraints from an ODE point of view by assuming exact evaluation of spatial differential operators and from the Fourier analysis for linear PDEs. The scheme is tested by classical two dimensional linear passive-transport problems, such as linear advection, rotation and swirling deformation. The scheme is applied to solve the nonlinear Vlasov–Poisson system and guiding center Vlasov model using high order tracing schemes. The effectiveness of the proposed conservative semi-Lagrangian scheme is demonstrated numerically by extensive numerical tests.


Semi-Lagrangian Conservative High order WENO Linear stability analysis Fourier analysis Vlasov–Poisson system 



The final draft of this paper is completed, while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Collaboration@ICERM program, supported by the National Science Foundation under Grant No. DMS-1439786.


  1. 1.
    Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73, 514–542 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov–Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRefGoogle Scholar
  5. 5.
    Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479–490 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov–Poisson system with strong magnetic field. Commun. Comput. Phys. 18, 263–296 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory, vol. 52. SIAM, Philadelphia (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, W., Nair, R.D., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed sphere. Mon. Weather Rev. 142, 457–475 (2014)CrossRefGoogle Scholar
  12. 12.
    Guo, W., Qiu, J.-M.: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. J. Comput. Phys. 234, 108–132 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huot, F., Ghizzo, A., Bertrand, P., Sonnendrücker, E., Coulaud, O.: Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–Maxwell system. J. Comput. Phys. 185, 512–531 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, S.-J., Rood, R.B.: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Weather Rev. 124, 2046–2070 (1996)CrossRefGoogle Scholar
  15. 15.
    Morton, K., Priestley, A., Suli, E.: Stability of the Lagrange–Galerkin method with non-exact integration. RAIRO-Modélisation mathématique et analyse numérique 22, 625–653 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numerische Mathematik 38, 309–332 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system. J. Sci. Comput. 71, 414–434 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230, 8386–8409 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Methods Eng. 17, 1525–1538 (1981)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev. 119, 2206–2223 (1991)CrossRefGoogle Scholar
  27. 27.
    Strain, J.: Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xiong, T., Qiu, J.-M., Russo, G.: High order multi-dimensional characteristic tracing for the incompressible Euler equation and the guiding-center Vlasov equation. J. Sci. Comput. (2018).
  29. 29.
    Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, C., Filbet, F.: Conservative and non-conservative methods based on hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18–36 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific ComputingXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  3. 3.Department of Mathematical ScienceUniversity of DelawareNewarkUSA

Personalised recommendations