Advertisement

A High Order Semi-Lagrangian Discontinuous Galerkin Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model Without Operator Splitting

  • Xiaofeng Cai
  • Wei Guo
  • Jing-Mei Qiu
Article
  • 41 Downloads

Abstract

In this paper, we generalize a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for multi-dimensional linear transport equations without operator splitting developed in Cai et al. (J Sci Comput 73(2–3):514–542, 2017) to the 2D time dependent incompressible Euler equations in the vorticity-stream function formulation and the guiding center Vlasov model. We adopt a local DG method for Poisson’s equation of these models. For tracing the characteristics, we adopt a high order characteristics tracing mechanism based on a prediction-correction technique. The SLDG with large time-stepping size might be subject to extreme distortion of upstream cells. To avoid this problem, we propose a novel adaptive time-stepping strategy by controlling the relative deviation of areas of upstream cells.

Keywords

Semi-Lagrangian Discontinuous Galerkin Guiding center Vlasov model Incompressible Euler equations Non-splitting Mass conservative Adaptive time-stepping method 

Notes

References

  1. 1.
    Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bell, J., Colella, P., Glaz, H.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonaventura, L., Ferretti, R., Rocchi, L.: A fully semi-Lagrangian discretization for the 2D incompressible Navier–Stokes equations in the vorticity-streamfunction formulation. Appl. Math. Comput. 323, 132–144 (2018)MathSciNetGoogle Scholar
  4. 4.
    Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations. J. Sci. Comput. 73(2–3), 514–542 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. Comptes Rendus de l’Académie des Sci.-Ser. I-Math. 332(3), 265–270 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov–Poisson system with strong magnetic field. Commun. Comput. Phys. 18(2), 263–296 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, W., Nair, R., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere. Mon. Weather Rev. 142(1), 457–475 (2013)CrossRefGoogle Scholar
  14. 14.
    Guo, Y., Xiong, T., Shi, Y.: A maximum-principle-satisfying high-order finite volume compact WENO scheme for scalar conservation laws with applications in incompressible flows. J. Sci. Comput. 65(1), 83–109 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lauritzen, P., Nair, R., Ullrich, P.: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229(5), 1401–1424 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, J.-G., Weinan, E.: Simple finite element method in vorticity formulation for incompressible flows. Math. Comput. 70(234), 579–593 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system. J. Sci. Comput. 71(1), 414–434 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Russo, G.: A deterministic vortex method for the Navier–Stokes equations. J. Comput. Phys. 108(1), 84–94 (1993)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Methods Eng. 17(10), 1525–1538 (1981)CrossRefGoogle Scholar
  23. 23.
    Souli, M.: Vorticity boundary conditions for Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 134(3–4), 311–323 (1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126(1), 122–138 (1996)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Weinan, E., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124(2), 368–382 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Weinan, E., Shu, C.-W.: A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. J. Comput. Phys. 110(1), 39–46 (1994)CrossRefGoogle Scholar
  27. 27.
    Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. arXiv preprint arXiv:1607.07409 (2016)
  28. 28.
    Xiong, T., Russo, G., Qiu, J.-M.: High order multi-dimensional characteristics tracing for the incompressible Euler equation and the guiding-center Vlasov equation. J. Sci. Comput. to appear (2018)Google Scholar
  29. 29.
    Xu, C.: Stabilization methods for spectral element computations of incompressible flows. J. Sci. Comput. 27(1–3), 495–505 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, C., Filbet, F.: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18–36 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the Guiding Center Vlasov Model. J. Sci. Comput. 73(2–3), 1316–1337 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA

Personalised recommendations