Advertisement

Journal of Scientific Computing

, Volume 79, Issue 2, pp 1182–1213 | Cite as

Optimized Schwarz Methods for the Optimal Control of Systems Governed by Elliptic Partial Differential Equations

  • Yingxiang XuEmail author
  • Xin Chen
Article
  • 44 Downloads

Abstract

Optimal control of systems governed by elliptic partial differential equations (PDEs) without constraint on the set of controls can be equivalently reformulated as a coupled system of second order elliptic PDEs, which has been considered to solve by a non-overlapping Schwarz domain decomposition method with the non-coupled, the partially-coupled and the fully-coupled Robin-like transmission conditions by Benamou (SIAM J Numer Anal 33:2401–2416, 1996) where a convergence analysis had been performed. Towards fast convergence of the overlapping and non-overlapping Schwarz subdomain iterations, in this paper we firstly perform, for fixed Tikhonov parameter \(\mu \), rigorous analyses based on optimization of the convergence factor of subdomain iterations in Fourier frequency domain to give the optimized transmission parameters involved in the above mentioned transmission conditions, as well as those involved in a Ventcell-like and a two-sided Robin-like transmission condition that we propose to accelerate the Schwarz subdomain iterations, and meanwhile we obtain also the corresponding asymptotic convergence rate estimates. The results show that the Tikhonov parameter \(\mu \) occurs in both the optimized transmission parameters and the corresponding convergence rate estimates and affects the performance of the Schwarz domain decomposition methods significantly: when \(\mu \) is less than a certain threshold value, with the decreasing of the Tikhonov parameter \(\mu \), the subdomain iteration converges more and more fast, though the regularity of the system deteriorates in this process. We lastly investigate the case where the Tikhonov parameter \(\mu =h^4\) that is suggested by Benamou (where h is the mesh size). We obtain as well the optimized transmission parameters involved in the non-coupled, the partially-coupled and the fully-coupled Robin-like transmission conditions, and find that they lead to optimized Schwarz methods that are very robust in the mesh size. The analysis also sheds light on optimizing the Schwarz domain decomposition methods for biharmonic equations, since they can also be reformulated as a system of second order elliptic PDEs. We use various numerical experiments to illustrate the theoretical findings.

Keywords

Optimized Schwarz method Optimized transmission condition Optimal control Elliptic PDE Coupled system 

Mathematics Subject Classification

65N55 65F10 49M99 

References

  1. 1.
    Benamou, J.D.: Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. C. R. Acad. Sci. Paris 317, 205–209 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Benamou, J.D.: A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer. Anal. 33(6), 2401–2416 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benamou, J.D.: Domain decomposition, optimal control of systems governed by partial differential equations, and synthesis of feedback laws. J. Optim. Theory Appl. 102(1), 15–36 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benamou, J.D., Despres, B.: A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136(1), 68–82 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comp. 78(265), 185–223 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blayo, E., Cherel, D., Rousseau, A.: Towards optimized Schwarz methods for the Navier–Stokes equations. J. Sci. Comput. 66(1), 275–295 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bouajaji, M.E., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), A2048–A2071 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chang, H., Yang, D.: A Schwarz domain decomposition method with gradient projection for optimal control governed by elliptic partial differential equations. J. Comput. Appl. Math. 235(17), 5078–5094 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, Z., Gander, M.J., Zhang, H.: On the relation between optimized Schwarz methods and source transfer. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII, pp. 217–225. Springer International Publishing, Berlin (2016)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Aanal. 38(4), 1959–1983 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dolean, V., Gander, M.J., Gerardo-Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dubois, O., Gander, M.J., Loisel, S., St-Cyr, A., Szyld, D.B.: The optimized schwarz method with a coarse grid correction. SIAM J. Sci. Comput. 34(1), A421–A458 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Mode. Simul. 9(2), 686–710 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comp. 74(249), 153–176 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gander, M.J., Liu, Y.: On the definition of dirichlet and neumann conditions for the biharmonic equation and its impact on associated schwarz methods. In: Lee, C.O., Cai, X.C., Keyes, D.E., Kim, H.H., Klawonn, A., Park, E.J., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering XXIII, pp. 303–311. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  21. 21.
    Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gander, M.J., Xu, Y.: Optimized schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52(4), 1981–2004 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gander, M.J., Xu, Y.: Optimized Schwarz methods for model problems with continuously variable coefficients. SIAM J. Sci. Comput. 38(5), A2964–A2986 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gander, M.J., Xu, Y.: Optimized Schwarz methods for domain decompositions with parabolic interfaces. In: Lee, C.O., et al. (eds.) Domain Decomposition Methods in Science and Engineering XXIII, pp. 323–332. Springer, Cham (2017)CrossRefGoogle Scholar
  25. 25.
    Gander, M.J., Xu, Y.: Optimized Schwarz methods with nonoverlapping circular domain decompositions. Math. Comp. 86(304), 637–660 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Heinkenschloss, M., Nguyen, H.: Balancing Neumann–Neumann methods for elliptic optimal control problems. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 589–596. Springer, Berlin, Heidelberg (2005)Google Scholar
  27. 27.
    Heinkenschloss, M., Nguyen, H.: Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems. SIAM J. Sci. Comput. 28(3), 1001–1028 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Herzog, R., Rheinbach, O.: FETI-DP methods for optimal control problems. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering XXI, pp. 387–395. Springer International Publishing, Cham (2014)Google Scholar
  29. 29.
    Hou, L.S., Lee, J.: A Robin-Robin non-overlapping domain decomposition method for an elliptic boundary control problem. Int. J. Numer. Anal. Model. 8(3), 443–465 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Japhet, C.: Domain decomposition methods and artificial boundary conditions in fluid dynamics: Optimized Order 2 method. Ph.D. thesis, Université Paris 13 (1998)Google Scholar
  31. 31.
    Lagnese, J.E., Leugering, G.: Domain Decomposition for Elliptic Optimal Control Problems, pp. 107–129. Birkhäuser, Basel, Basel (2004)zbMATHGoogle Scholar
  32. 32.
    Lions, J.L.: Contrôle Optimal De Systemes Gouvernés Par Des Équations Aux Dérivées Partielles. Dunod (1968)Google Scholar
  33. 33.
    Lions, P.L.: On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, vol. 6, pp. 202–223. SIAM, Philadelphia, PA (1990)Google Scholar
  34. 34.
    Magouls, F., Ivnyi, P., Topping, B.: Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 193(45–47), 4797–4818 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Martin, V.: An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl. Numer. Math. 52(4), 401–428 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pearson, J.W., Stoll, M.: Fast iterative solution of reaction–diffusion control problems arising from chemical processes. SIAM J. Sci. Comput. 35(5), 987–1009 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Qin, L., Xu, X.: Optimized Schwarz methods with Robin transmission conditions for parabolic problems. SIAM J. Sci. Comput. 31(1), 608–623 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rees, T., Dollar, H.S., Wathen, A.J.: Optimal solvers for PDE-constrained optimization. SIAM J. Sci. Comput. 32(1), 271–298 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Rees, T., Stoll, M.: Block-triangular preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 17(6), 977–996 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Schwarz, H.A.: Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)Google Scholar
  41. 41.
    Shang, Y.Q., He, Y.N.: Fourier analysis of schwarz domain decomposition methods for the biharmonic equation. Appl. Math. Mech. 30(9), 1177–1182 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Xu, Y.: The influence of domain truncation on the performance of optimized Schwarz methods. Electron. Trans. Numer. Anal. 49, 182–209 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Xu, Y.: Optimized Schwarz methods with Ventcell transmission conditions for model problems with continuously variable coefficients. J. Comput. Appl. Math. 334, 97–110 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNortheast Normal UniversityChangchunChina

Personalised recommendations