Advertisement

Journal of Scientific Computing

, Volume 79, Issue 2, pp 1015–1056 | Cite as

A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows

  • Juntao HuangEmail author
  • Weifeng Zhao
  • Chi-Wang Shu
Article
  • 111 Downloads

Abstract

In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018.  https://doi.org/10.1007/s10915-018-0852-1) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu (2018), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme.

Keywords

Compressible Euler equations Positivity-preserving Chemical reactions Production–destruction equations Finite difference Third-order accuracy 

Notes

Acknowledgements

We would like to thank Xiangxiong Zhang from Purdue University for many fruitful discussions.

References

  1. 1.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chertock, A., Cui, S., Kurganov, A., Wu, T.: Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53(4), 2008–2029 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)zbMATHGoogle Scholar
  7. 7.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hu, J., Shu, R.: A second-order asymptotic-preserving and positivity-preserving exponential Runge–Kutta method for a class of stiff kinetic equations. arXiv:1807.03728 (2018)
  9. 9.
    Hu, J., Shu, R., Zhang, X.: Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56(2), 942–973 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huang, J., Shu, C.-W.: A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model. Math. Mod. Methods Appl. Sci. 27(03), 549–579 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. (2018).  https://doi.org/10.1007/s10915-018-0852-1
  13. 13.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kopecz, S., Meister, A.: Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systems. BIT Numer. Math. 58, 691–728 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kopecz, S., Meister, A.: On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shu, C.-W.: Bound-preserving high order finite volume schemes for conservation laws and convection-diffusion equations. In: Cances, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Proceedings of the Eighth Conference on Finite Volumes for Complex Applications (FVCA8), Springer Proceedings in Mathematics and Statistics, vol. 199, pp. 3–14. Springer, Switzerland (2017)Google Scholar
  17. 17.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231(2), 653–665 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228(18), 6682–6702 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xu, Z., Zhang, X.: Bound-preserving high-order schemes. Handb. Numer. Anal. 18, 81–102 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of Applied MathematicsUniversity of Science and Technology BeijingBeijingChina
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations