Advertisement

Journal of Scientific Computing

, Volume 79, Issue 2, pp 935–968 | Cite as

A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures

  • F. Hecht
  • Z. Mghazli
  • I. NajiEmail author
  • J. E. Roberts
Article
  • 60 Downloads

Abstract

This article is concerned with a posteriori error estimates for a discrete-fracture, multidimensional, numerical model for flow in a fractured porous medium. Local residual error estimators are defined and upper and lower bounds in terms of these estimators for both the pressure and the Darcy velocity are derived. Numerical examples using these estimates for automatic grid refinement are given.

Keywords

A posteriori error estimate Mixed finite element Reduced model Fractured porous media 

Mathematics Subject Classification

65N15 65N30 65N50 76S05 

References

  1. 1.
    Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain decomposition for some transmission problems in flow in porous media. In: Chen, Z., Ewing, R.E., Shi, Z.C. (eds.) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, vol. 552, pp. 22–34. Springer-Verlag, Berlin (2000)CrossRefGoogle Scholar
  2. 2.
    Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Babuvška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barrios, T.P., Behrens, E.M., González, M.: Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity. Appl. Numer. Math. 84, 46–65 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernardi, C., Hecht, F.: Quelques Propriétés d’approximation des éléments Finis de Nédélec, application à l’analyse a Posteriori, vol. 344(7), pp. 461–466. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  6. 6.
    Bernardi, C., Hecht, F., Mghazli, Z.: Mortar finite element discretization for the flow in a nonhomogeneous porous medium. Comput. Methods Appl. Mech. Eng. 196(8), 1554–1573 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problemes Aux Limites Elliptiques (Vol, vol. 45. Springer, Berlin (2004)zbMATHGoogle Scholar
  8. 8.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, vol. 44, pp. 678–685. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  9. 9.
    Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33(6), 2431–2444 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. Am. Math. Soc. 66(218), 465–476 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures*. ESAIM Math. Model. Numer. Anal. 48(4), 1089–1116 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)CrossRefGoogle Scholar
  13. 13.
    Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)zbMATHGoogle Scholar
  15. 15.
    Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)Google Scholar
  16. 16.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)CrossRefGoogle Scholar
  18. 18.
    Larson, M.G., Målqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108(3), 487–500 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lions, J.L., Magenes, E.: Problemes aux limites non homogenes et applications. Dunod, Paris (1968)Google Scholar
  20. 20.
    Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75(256), 1659–1674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mghazli, Z., Naji, I.: Analyse a posteriori d’erreur par reconstruction pour un modèle d’écoulement dans un milieu poreux fracturé. C. R. Math. 355(3), 304–309 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nicaise, S., Creusé, E.: Isotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence forme. Electron. Trans. Numer. Anal. 23, 38–62 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Roberts, J.E., Thomas, J.-M.: Handbook of Numerical Analysis 2, Finite Element Methods—Part 1, volume 2, Chapter Mixed and Hybrid Methods, pp. 523–639. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1991)Google Scholar
  25. 25.
    Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.I.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19(6), 1219–1230 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Serres, C., Alboin, C., Jaffre, J., Roberts, J.: Modeling fractures as interfaces for flow and transport in porous media (No. IRSN-DES–497). Inst. de Radioprotection et de Surete Nucleaire (2002)Google Scholar
  27. 27.
    Verfürth, R.: A Review of a Posteriori Error Estimation. In and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Amsterdam (1996)zbMATHGoogle Scholar
  28. 28.
    Vohralík, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comput. 79(272), 2001–2032 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wheeler, M.F., Yotov, I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43(3), 1021–1042 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wohlmuth, B., Hoppe, R.: A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements. Math. Comput. Am. Math. Soc. 68(228), 1347–1378 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire Jacques-Louis LionsSorbonne UniversitéParisFrance
  2. 2.LIRNE-EIMAIbn Tofaïl UniversityKenitraMorocco
  3. 3.Inria ParisParisFrance

Personalised recommendations