Advertisement

Journal of Scientific Computing

, Volume 79, Issue 2, pp 827–866 | Cite as

Particle-without-Particle: A Practical Pseudospectral Collocation Method for Linear Partial Differential Equations with Distributional Sources

  • Marius OlteanEmail author
  • Carlos F. Sopuerta
  • Alessandro D. A. M. Spallicci
Article

Abstract

Partial differential equations with distributional sources—in particular, involving (derivatives of) delta distributions—have become increasingly ubiquitous in numerous areas of physics and applied mathematics. It is often of considerable interest to obtain numerical solutions for such equations, but any singular (“particle”-like) source modeling invariably introduces nontrivial computational obstacles. A common method to circumvent these is through some form of delta function approximation procedure on the computational grid; however, this often carries significant limitations on the efficiency of the numerical convergence rates, or sometimes even the resolvability of the problem at all. In this paper, we present an alternative technique for tackling such equations which avoids the singular behavior entirely: the “Particle-without-Particle” method. Previously introduced in the context of the self-force problem in gravitational physics, the idea is to discretize the computational domain into two (or more) disjoint pseudospectral (Chebyshev–Lobatto) grids such that the “particle” is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source effectively replaced by jump (boundary) conditions thereon. We prove here that this method yields solutions to any linear PDE the source of which is any linear combination of delta distributions and derivatives thereof supported on a one-dimensional subspace of the problem domain. We then implement it to numerically solve a variety of relevant PDEs: hyperbolic (with applications to neuroscience and acoustics), parabolic (with applications to finance), and elliptic. We generically obtain improved convergence rates relative to typical past implementations relying on delta function approximations.

Keywords

Pseudospectral methods Distributionally-sourced PDEs Gravitational self-force Neural populations Price formation 

Notes

Acknowledgements

Due by MO to the Natural Sciences and Engineering Research Council of Canada, by MO and ADAMS to LISA France-CNES, and by MO and CFS to the Ministry of Economy and Competitivity of Spain, MINECO, Contracts ESP2013-47637-P, ESP2015-67234-P and ESP2017-90084-P.

References

  1. 1.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957)zbMATHGoogle Scholar
  2. 2.
    Schwartz, L.: Sur l’impossibilité de la Multiplication des Distributions. C. R. Acad. Sci. Paris, 29, 847 (1954). http://sites.mathdoc.fr/OCLS/pdf/OCLS_1954__21__1_0.pdf
  3. 3.
    Li, C.K.: A review on the products of distributions. In: Taş, K., Tenreiro Machado, J.A., Baleanu, D. (eds.) Mathematical Methods in Engineering, pp. 71–96. Springer, Dordrecht (2007). https://link.springer.com/chapter/10.1007/978-1-4020-5678-9_5
  4. 4.
    Colombeau, J.F.: Nonlinear generalized functions: their origin, some developments and recent advances. São Paulo J. Math. Sci. 7, 201 (2013). arXiv:1401.4755 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bottazzi, E.: Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations, arXiv:1704.00470 [math] (2017)
  6. 6.
    Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987).  https://doi.org/10.1103/PhysRevD.36.1017 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mino, Y., Sasaki, M., Tanaka, T.: Gravitational radiation reaction to a particle motion. Phys. Rev. D 55, 3457 (1997).  https://doi.org/10.1103/PhysRevD.55.3457 CrossRefGoogle Scholar
  8. 8.
    Quinn, T.C., Wald, R.M.: Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Phys. Rev. D 56, 3381 (1997).  https://doi.org/10.1103/PhysRevD.56.3381 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Detweiler, S., Whiting, B.F.: Self-force via a Green’s function decomposition. Phys. Rev. D 67, 024025 (2003).  https://doi.org/10.1103/PhysRevD.67.024025 CrossRefGoogle Scholar
  10. 10.
    Gralla, S.E., Wald, R.M.: A rigorous derivation of gravitational self-force. Class. Quantum Gravity 25, 205009 (2008). http://stacks.iop.org/0264-9381/25/i=20/a=205009
  11. 11.
    Gralla, S.E., Wald, R.M.: A note on the coordinate freedom in describing the motion of particles in general relativity. Class. Quantum Gravity 28, 177001 (2011). http://stacks.iop.org/0264-9381/28/i=17/a=177001
  12. 12.
    Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14, 7 (2011). http://relativity.livingreviews.org/Articles/lrr-2011-7/
  13. 13.
    Blanchet, L., Spallicci, A., Whiting, B. (eds.): Mass and Motion in General Relativity. No. 162 in Fundamental Theories of Physics Springer, Dordrecht, (2011). http://www.springer.com/gp/book/9789048130146
  14. 14.
    Spallicci, A.D.A.M., Ritter, P., Aoudia, S.: Self-force driven motion in curved spacetime. Int. J. Geom. Methods Mod. Phys. 11, 1450072 (2014).  https://doi.org/10.1142/S0219887814500728 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pound, A.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 399–486. Springer, Cham, (2015).  https://doi.org/10.1007/978-3-319-18335-0_13
  16. 16.
    Wardell, B.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 487–522. Springer, Cham, (2015). https://link.springer.com/chapter/10.1007/978-3-319-18335-0_14
  17. 17.
    Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A Math. Phys. Eng. Sci. 167, 148 (1938). http://rspa.royalsocietypublishing.org/content/167/929/148
  18. 18.
    DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960). http://www.sciencedirect.com/science/article/pii/0003491660900300
  19. 19.
    Barut, A.O.: Electrodynamics and Classical Theory of Fields and Particles. Dover Publications, New York (1980)Google Scholar
  20. 20.
    Amaro-Seoane, P., et al.: The gravitational universe (2013). arXiv:1305.5720 [astro-ph.CO]
  21. 21.
    Amaro-Seoane, P., et al.: Laser interferometer space antenna, (2017). arXiv:1702.00786 [astro-ph]
  22. 22.
    Haskell, E., Nykamp, D.Q., Tranchina, D.: Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Netw. Comput. Neural Syst. 12, 141 (2001). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=92F61208FEAF49749FF4D689FB16AE83?doi=10.1.1.333.3553&rep=rep1&type=pdf
  23. 23.
    Casti, A.R.R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate-and-fire-or-burst neurons. Neural Comput. 14, 957 (2002).  https://doi.org/10.1162/089976602753633349 CrossRefzbMATHGoogle Scholar
  24. 24.
    Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011).  https://doi.org/10.1186/2190-8567-1-7 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cáceres, M.J., Schneider, R.: Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinet. Relat. Mod. 10, 587 (2016). http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=13531
  26. 26.
    Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229 (2007).  https://doi.org/10.1007/s11537-007-0657-8 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Markowich, P.A., Matevosyan, N., Pietschmann, J.F., Wolfram, M.T.: On a parabolic free boundary equation modeling price formation. Math. Models Methods Appl. Sci. 19, 1929 (2009).  https://doi.org/10.1142/S0218202509003978 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Caffarelli, L.A., Markowich, P.A., Pietschmann, J.F.: On a price formation free boundary model by Lasry & Lions. C. R. Acad. Sci. Paris, Ser. I 349, 621 (2011). http://www.sciencedirect.com/science/article/pii/S1631073X11001488
  29. 29.
    Burger, M., Caffarelli, L., Markowich, P.A., Wolfram, M.T.: On a Boltzmann-type price formation model. Proc. R. Soc. A 469, 20130126 (2013). http://rspa.royalsocietypublishing.org/content/469/2157/20130126
  30. 30.
    Achdou, Y., Buera, F.J., Lasry, J.M., Lions, P.L., Moll, B.: Partial differential equation models in macroeconomics. Phil. Trans. R. Soc. A 372, 20130397 (2014). http://rsta.royalsocietypublishing.org/content/372/2028/20130397
  31. 31.
    Pietschmann, J.F.: On some partial differential equation models in socio-economic contexts—analysis and numerical simulations. Doctorate thesis. University of Cambridge (2012). https://www.repository.cam.ac.uk/handle/1810/241495
  32. 32.
    Petersson, N.A., Sjogreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8, 1074 (2010). http://www.global-sci.com/issue/abstract/readabs.php?vol=8&page=1074&issue=5&ppage=1110&year=2010
  33. 33.
    Kaltenbacher, M. (ed.): Computational Acoustics. Springer, New York (2017). http://www.springer.com/gp/book/9783319590370
  34. 34.
    Romanowicz, B., Dziewonski, A. (eds.): Seismology and Structure of the Earth. Treatise on Geophysics, Elsevier (2007)Google Scholar
  35. 35.
    Aki, K., Richards, P.G.: Quantitative Seismology, 2nd edn. University Science Books, Sausalito (2009)Google Scholar
  36. 36.
    Shearer, P.M.: Introduction to Seismology, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  37. 37.
    Madariaga, R.: Earthquake seismology. In: Kanamori, H. (ed.) Treatise on Geophysics, pp. 59–82. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  38. 38.
    Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462 (2004). http://www.sciencedirect.com/science/article/pii/S0021999104001767
  39. 39.
    Cañizares, P.: Extreme-Mass-Ratio Inspirals. Doctorate thesis, Universitat Autònoma de Barcelona (2011). https://gwic.ligo.org/thesisprize/2011/canizares_thesis.pdf
  40. 40.
    Cañizares, P., Sopuerta, C.F.: Efficient pseudospectral method for the computation of the self-force on a charged particle: circular geodesics around a Schwarzschild black hole. Phys. Rev. D 79, 084020 (2009).  https://doi.org/10.1103/PhysRevD.79.084020 CrossRefGoogle Scholar
  41. 41.
    Cañizares, P., Sopuerta, C.F., Jaramillo, J.L.: Pseudospectral collocation methods for the computation of the self-force on a charged particle: generic orbits around a Schwarzschild black hole. Phys. Rev. D 82, 044023 (2010).  https://doi.org/10.1103/PhysRevD.82.044023 CrossRefGoogle Scholar
  42. 42.
    Cañizares, P., Sopuerta, C.F.: Time-domain modelling of extreme-mass-ratio inspirals for the laser interferometer space antenna. J. Phys. Conf. Ser. 314, 012075 (2011). http://stacks.iop.org/1742-6596/314/i=1/a=012075
  43. 43.
    Cañizares, P., Sopuerta, C.F.: Tuning time-domain pseudospectral computations of the self-force on a charged scalar particle. Class. Quantum Gravity 28, 134011 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134011
  44. 44.
    Jaramillo, J.L., Sopuerta, C.F., Cañizares, P.: Are time-domain self-force calculations contaminated by Jost solutions? Phys. Rev. D 83, 061503 (2011).  https://doi.org/10.1103/PhysRevD.83.061503 CrossRefGoogle Scholar
  45. 45.
    Cañizares, P., Sopuerta, C.F.: Overcoming the gauge problem for the gravitational self-force (2014). arXiv:1406.7154 [gr-qc]
  46. 46.
    Oltean, M., Sopuerta, C.F., Spallicci, A.D.A.M.: A frequency-domain implementation of the particle-without-particle approach to EMRIs. J. Phys.: Conf. Ser. 840, 012056 (2017). http://stacks.iop.org/1742-6596/840/i=1/a=012056
  47. 47.
    Aoudia, S., Spallicci, A.D.A.M.: Source-free integration method for black hole perturbations and self-force computation: radial fall. Phys. Rev. D 83, 064029 (2011).  https://doi.org/10.1103/PhysRevD.83.064029 CrossRefGoogle Scholar
  48. 48.
    Ritter, P., Spallicci, A.D.A.M., Aoudia, S., Cordier, S.: A fourth-order indirect integration method for black hole perturbations: even modes. Class. Quantum Gravity 28, 134012 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134012
  49. 49.
    Spallicci, A.D.A.M., Ritter, P., Jubertie, S., Cordier, S., Aoudia, S.: Towards a self-consistent orbital evolution for EMRIs. Astron. Soc. Pac. Conf. Ser. 467, 221 (2012). arXiv:1209.1969 Google Scholar
  50. 50.
    Spallicci, A.D.A.M., Ritter, P.: A fully relativistic radial fall. Int. J. Geom. Methods Mod. Phys. 11, 1450090 (2014).  https://doi.org/10.1142/S021988781450090X MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs. Int. J. Geom. Methods Mod. Phys. 13, 1650021 (2015).  https://doi.org/10.1142/S0219887816500213 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. II. Self-force consistent radial fall. Int. J. Geom. Methods Mod. Phys. 13, 1650019 (2015).  https://doi.org/10.1142/S0219887816500195 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relat. 12, 1 (2009). http://relativity.livingreviews.org/Articles/lrr-2009-1/
  54. 54.
    Santos-Oliván, D., Sopuerta, C.F.: Pseudo-spectral collocation methods for hyperbolic equations with arbitrary precision: applications to relativistic gravitation (2018). arXiv:1803.00858 [gr-qc, physics:physics]
  55. 55.
    Jung, J.H., Don, W.S.: Collocation methods for hyperbolic partial differential equations with singular sources. Adv. Appl. Math. Mech. 1, 769 (2009). http://www.global-sci.org/aamm/readabs.php?vol=1&no=6&doc=769&year=2009&ppage=780
  56. 56.
    Jung, J.H.: A note on the spectral collocation approximation of some differential equations with singular source terms. J. Sci. Comput. 39, 49 (2009).  https://doi.org/10.1007/s10915-008-9249-x MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Petersson, N.A., O’Reilly, O., Sjögreen, B., Bydlon, S.: Discretizing singular point sources in hyperbolic wave propagation problems. J. Comput. Phys. 321, 532 (2016). http://www.sciencedirect.com/science/article/pii/S0021999116302054
  58. 58.
    López-Alemán, R., Khanna, G., Pullin, J.: Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation. Class. Quantum Gravity 20, 3259 (2003). http://stacks.iop.org/0264-9381/20/i=14/a=320
  59. 59.
    Wilbraham, H.: On a certain periodic function. Camb Dublin Math J 3, 198 (1848)Google Scholar
  60. 60.
    Gibbs, J.W.: Letter to the editor. Nature 59, 606 (1899)CrossRefGoogle Scholar
  61. 61.
    Field, S.E., Hesthaven, J.S., Lau, S.R.: Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries. Class. Quantum Gravity 26, 165010 (2009). http://stacks.iop.org/0264-9381/26/i=16/a=165010
  62. 62.
    Shin, B.C., Jung, J.H.: Spectral collocation and radial basis function methods for one-dimensional interface problems. Appl. Numer. Math. 61, 911 (2011). http://www.sciencedirect.com/science/article/pii/S0168927411000523
  63. 63.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998). http://bookstore.ams.org/gsm-19-r/
  64. 64.
    Stakgold, I., Holst, M.J.: Green’s Functions and Boundary Value Problems, 3rd edn. Wiley, Hoboken (2011)CrossRefzbMATHGoogle Scholar
  65. 65.
    Cortizo, S.F.: On Dirac’s Delta Calculus, (1995). arXiv:funct-an/9510004
  66. 66.
    Constantine, G., Savits, T.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503 (1996). http://www.ams.org/tran/1996-348-02/S0002-9947-96-01501-2/
  67. 67.
    Benci, V.: Ultrafunctions and generalized solutions. Adv. Nonlinear Stud. 13, 461 (2013). https://www.degruyter.com/view/j/ans.2013.13.issue-2/ans-2013-0212/ans-2013-0212.xml
  68. 68.
    Trefethen, L.N.: Spectral Methods in MATLAB, SIAM: Society for Industrial and Applied Mathematics, Philadelphia, (2001)Google Scholar
  69. 69.
    Zhou, J.G., Causon, D.M., Ingram, D.M., Mingham, C.G.: Numerical solutions of the shallow water equations with discontinuous bed topography. Int. J. Numer. Meth. Fluids 38, 769 (2002).  https://doi.org/10.1002/fld.243/abstract CrossRefzbMATHGoogle Scholar
  70. 70.
    Bernstein, A., Chertock, A., Kurganov, A.: Central-upwind scheme for shallow water equations with discontinuous bottom topography. Bull. Braz. Math. Soc. New Ser. 47, 91 (2016).  https://doi.org/10.1007/s00574-016-0124-3 MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Droste, J.: Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein. Doctorate thesis (Dir. H.A. Lorentz), Rijksuniversiteit Leiden (1916). https://www.lorentz.leidenuniv.nl/history/proefschriften/sources/Droste_1916.pdf
  72. 72.
    Droste, J.: Het veld van een enkel centrum in Einstein’s theorie der zwaartekracht, en de beweging van een stoffelijk punt in dat veld. Kon. Ak. Wetensch. Amst. 25, 163 (1916). [Proc. Acad. Sc. Amsterdam 19 (1917) 197]Google Scholar
  73. 73.
    Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. Preuß. Akad. Wissenschaften Berlin, Phys.-Math. Kl. p. 189 (1916)Google Scholar
  74. 74.
    Rothman, T.: Editor’s Note: the field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit 34, 1541 (2002). https://link.springer.com/content/pdf/10.1023%2FA%3A1020795205829.pdf
  75. 75.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Mineola (2001)zbMATHGoogle Scholar
  76. 76.
    Peyret, R.: Chebyshev method. In: Spectral Methods for Incompressible Viscous Flow, Applied Mathematical Sciences, pp. 39–100. Springer, New York (2002).  https://doi.org/10.1007/978-1-4757-6557-1_4

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Space Sciences (ICE, CSIC)Cerdanyola del Vallès (Barcelona)Spain
  2. 2.Institut d’Estudis Espacials de Catalunya (IEEC)BarcelonaSpain
  3. 3.Departament de Física, Facultat de CiènciesUniversitat Autònoma de BarcelonaCerdanyola del Vallès (Barcelona)Spain
  4. 4.Observatoire des Sciences de l’Univers en région Centre (OSUC)Université d’OrléansOrléansFrance
  5. 5.Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E)Centre National de la Recherche Scientifique (CNRS)OrléansFrance
  6. 6.Pôle de Physique, Collegium Sciences et Techniques (CoST)Université d’OrléansOrléansFrance
  7. 7.Departamento de Astrofísica, Cosmologia e Interações Fundamentais (COSMO)Centro Brasileiro de Pesquisas Físicas (CBPF)Urca, Rio de JaneiroBrazil

Personalised recommendations