Advertisement

Journal of Scientific Computing

, Volume 79, Issue 1, pp 648–669 | Cite as

A Simplified Threshold Dynamics Algorithm for Isotropic Surface Energies

  • Tiago SalvadorEmail author
  • Selim Esedoḡlu
Article
  • 86 Downloads

Abstract

We present a simplified version of the threshold dynamics algorithm given in Esedoḡlu and Otto (Commun Pure Appl Math 68(5):808–864, 2015). The new version still allows specifying \(N\atopwithdelims ()2\) possibly distinct surface tensions and \(N\atopwithdelims ()2\) possibly distinct mobilities for a network with N phases, but achieves this level of generality without the use of retardation functions. Instead, it employs linear combinations of Gaussians in the convolution step of the algorithm. Convolutions with only two distinct Gaussians is enough for the entire network, maintaining the efficiency of the original thresholding scheme. We discuss stability and convergence of the new algorithm, including some counterexamples in which convergence fails. The apparently convergent cases include unequal surface tensions given by the Read and Shockley model and its three dimensional extensions, along with equal mobilities, that are a very common choice in computational materials science.

Keywords

Threshold dynamics MBO algorithm Multi-phase flow \(\varGamma \)-convergence Stability 

Mathematics Subject Classification

65M12 35K93 

References

  1. 1.
    Alberti, G., Bellettini, G.: A nonlocal anisotropic model for phase transitions—part II: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9, 261–284 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993).  https://doi.org/10.1137/0331020 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Braides, L.A.A.: Functionals defined on partitions in sets of finite perimeter II: semicontinuity, relaxation and homogenization. J. Math. Pures Appliquées 69, 307–333 (1990)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bronsard, L., Wetton, B.T.R.: A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys. 120(1), 66–87 (1995).  https://doi.org/10.1006/jcph.1995.1149 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Elsey, M., Esedoḡlu, S.: Threshold dynamics for anisotropic surface energies. Math. Comput. 87, 1721–1756 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Elsey, M., Esedoḡlu, S., Smereka, P.: Diffusion generated motion for grain growth in two and three dimensions. J. Comput. Phys. 228(21), 8015–8033 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Esedoḡlu, S., Jacobs, M., Zhang, P.: Kernels with prescribed surface tension and mobility for threshold dynamics schemes. J. Comput. Phys. 337, 62–83 (2017).  https://doi.org/10.1016/j.jcp.2017.02.023 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Esedoḡlu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2015).  https://doi.org/10.1002/cpa.21527 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, L.C.: Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42(2), 533–557 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1600–1613 (2014).  https://doi.org/10.1109/TPAMI.2014.2300478 CrossRefzbMATHGoogle Scholar
  11. 11.
    Garcke, H., Nestler, B., Stoth, B.: A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60(1), 295–315 (2000).  https://doi.org/10.1137/S0036139998334895 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Herring, C.: Surface Tension as a Motivation for Sintering, pp. 33–69. Springer, Berlin (1999).  https://doi.org/10.1007/978-3-642-59938-5_2 Google Scholar
  13. 13.
    Holm, E., Hassold, G., Miodownik, M.: On misorientation distribution evolution during anisotropic grain growth. Acta Mater. 49(15), 2981–2991 (2001).  https://doi.org/10.1016/S1359-6454(01)00207-5 CrossRefGoogle Scholar
  14. 14.
    Ishii, H., Pires, G.E., Souganidis, P.E.: Threshold dynamics type approximation schemes for propagating fronts. J. Math. Soc. Japan 51(2), 267–308 (1999).  https://doi.org/10.2969/jmsj/05120267 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laux, T., Otto, F.: Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Partial Differ. Equ. 55(5), 129 (2016).  https://doi.org/10.1007/s00526-016-1053-0 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Laux, T., Otto, F.: Brakke’s Inequality for the Thresholding Scheme. Technical report, Max Planck Institute for Mathematics in the Sciences (2017)Google Scholar
  17. 17.
    Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3(2), 253–271 (1995).  https://doi.org/10.1007/BF01205007 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. In: The Computational Crystal Growers. AMS Selection in Mathematics, pp. 73–83 (1992)Google Scholar
  19. 19.
    Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994).  https://doi.org/10.1006/jcph.1994.1105 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Miranda Michele, P.D.P.F.P.M.: Short-time heat flow and functions of bounded variation in \(\{R\}^n\). Ann. de la Fac. des Sci. de Toulouse Math. 16(1), 125–145 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27(8), 900–904 (1956).  https://doi.org/10.1063/1.1722511 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989).  https://doi.org/10.1002/cpa.3160420503 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Read, W.T., Shockley, W.: Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950).  https://doi.org/10.1103/PhysRev.78.275 CrossRefzbMATHGoogle Scholar
  24. 24.
    Ruuth, S.J.: A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145(1), 166–192 (1998).  https://doi.org/10.1006/jcph.1998.6028 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ruuth, S.J.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144(2), 603–625 (1998).  https://doi.org/10.1006/jcph.1998.6025 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ruuth, S.J., Merriman, B.: Convolution-thresholding methods for interface motion. J. Comput. Phys. 169(2), 678–707 (2001).  https://doi.org/10.1006/jcph.2000.6580 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations