Advertisement

Journal of Scientific Computing

, Volume 79, Issue 1, pp 493–516 | Cite as

Numerical Simulation and Error Estimation of the Time-Dependent Allen–Cahn Equation on Surfaces with Radial Basis Functions

  • Vahid Mohammadi
  • Davoud Mirzaei
  • Mehdi DehghanEmail author
Article
  • 136 Downloads

Abstract

In this paper a numerical simulation based on radial basis functions is presented for the time-dependent Allen–Cahn equation on surfaces with no boundary. In order to approximate the temporal variable, a first-order time splitting technique is applied. The error analysis is given when the true solution lies on appropriate Sobolev spaces defined on surfaces. The method only requires a set of scattered points on a given surface and an approximation to the surface normal vectors at these points. Besides, the approach is based on Cartesian coordinates and thus any coordinate singularity has been omitted. Some numerical results are given to illustrate the ability of the technique on sphere, torus and red blood cell as three well-known surfaces.

Keywords

Allen–Cahn equation Radial basis functions Laplace–Beltrami operator Time splitting scheme Error estimate 

Notes

Acknowledgements

The second author was in part supported by a Grant from IPM, No. 96650427. The authors are very grateful to reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

References

  1. 1.
    Adalsteinsson, D., Sethian, J.A.: Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185(1), 271–288 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arcangli, R., Lpez de Silanes, M.C., Torrens, J.J.: An extension of a bound for functions in Sobolev spaces, with applications to \((m, s)\)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)Google Scholar
  3. 3.
    Arcangli, R., Lpez de Silanes, M.C., Torrens, J.J.: Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data. Numer. Math. 121, 587–608 (2012)Google Scholar
  4. 4.
    Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)CrossRefGoogle Scholar
  5. 5.
    Beneš, M., Chalupecký, V., Mikula, K.: Geometrical image segmentation by the Allen-Cahn equation. Appl. Numer. Math. 51, 187–205 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schr\(o\)dinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertalmo, M., Cheng, L., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Calhoun, D.A., Helzel, C.: A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes. SIAM J. Sci. Comput. 31(6), 4066–4099 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)CrossRefGoogle Scholar
  10. 10.
    Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Choi, Y., Jeong, D., Lee, S., Yoo, M., Kim, J.: Motion by mean curvature of curves on surfaces using the Allen-Cahn equation. Int. J. Eng. Sci. 97, 126–132 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Csomós, P., Faragó, I.: Error analysis of the numerical solution of split differential equations. Math. Comput. Model. 48, 1090–1106 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357. Springer, Berlin (1988)Google Scholar
  14. 14.
    Dziuk, G., Elliot, C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dziuk, G., Elliot, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)MathSciNetGoogle Scholar
  16. 16.
    Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Hackensack (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Feng, Z., Yin, J., Zhou, J.: Inpainting algorithm for jacquared image based on phase-field model. In: IEEE Intelligent System and Knowledge Engineering ISKE, pp. 1203–1207 (2008)Google Scholar
  18. 18.
    Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fuselier, E.J., Wright, G.B.: Order-preserving derivative approximation with periodic radial basis functions. Adv. Comput. Math. 41, 23–53 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fuselier, E.J., Wright, G.B.: Scattered data interpolation on embedded submanifolds with retricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kay, D.A., Tomasi, A.: Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution. IEEE Trans. Image Process. 18, 2330–2339 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, J., Lee, S., Choi, Y.: A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, J., Jeong, D., Yang, S.-D., Choi, Y.: A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces. J. Comput. Phys. 334, 170–181 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kowalczyk, M.: On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions. Ann. Mat. Pura Appl. 184, 17–52 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Le Gia, Q.T.: Galerkin approximation for elliptic PDEs on spheres. J. Approx. Theory 130, 123–147 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Le Gia, Q.T.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 121, 99–125 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces SIAM. J. Sci. Comput 39(5), 2129–2151 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Li, Y., Jeong, D., Choi, J., Lee, S., Kim, J.: Fast local image inpainting based on the Allen-Cahn model. Digit. Signal Process. 37, 65–74 (2015)CrossRefGoogle Scholar
  32. 32.
    Lee, H.G., Kim, J.: A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces. Comput. Methods Appl. Mech. Eng. 307, 32–43 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Macdonald, C.B., Ruuth, S.J.: Level set equations on surfaces via the closest point method. J. Sci. Comput. 35, 219–240 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mirzaei, D.: Direct approximation on spheres using generalized moving least squares. BIT Numer. Math. 57, 1041–1063 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mirzaei, D.: A Petrov-Galerkin kernel approximation on the sphere. SIAM J. Numer. Anal. 56(1), 274–295 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Morton, T.M., Neamtu, M.: Error bonds for solving pseudodifferential equations on spheres. J. Approx. Theory 114, 242–268 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Narcowich, F.J., Sun, X., Ward, J.D.: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27, 107–124 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Narcowich, F.J., Ward, J.D.: Scattered-data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving PDEs on the sphere using highly localized kernel bases. Math. Comput. 86, 197–231 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ward, M.J.: Metastable bubble solutions for the Allen-Cahn equation with mass conservation. SIAM J. Appl. Math. 56, 1247–1279 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wendland, H.: Scattered Data Approximation. Cambridge Mongraph on Applied and Computational Mathematics. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  45. 45.
    Wendland, H.: Divergence-free kernel methods for approximating the Stokes problem. SIAM J. Numer. Anal. 47(4), 3158–3179 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 643–662 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wu, X., Zwieten, G.J., Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30, 180–203 (2014)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Xiao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 22, 2857–2877 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vahid Mohammadi
    • 1
  • Davoud Mirzaei
    • 2
    • 3
  • Mehdi Dehghan
    • 1
    Email author
  1. 1.Department of Applied Mathematics, Faculty of Mathematics and Computer SciencesAmirkabir University of TechnologyTehranIran
  2. 2.Department of MathematicsUniversity of IsfahanIsfahanIran
  3. 3.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations