Numerical Methods for the Wigner Equation with Unbounded Potential

  • Zhenzhu Chen
  • Yunfeng Xiong
  • Sihong ShaoEmail author


Unbounded potentials are always utilized to strictly confine quantum dynamics and generate bound or stationary states due to the existence of quantum tunneling. However, the existed accurate Wigner solvers are often designed for either localized potentials or those of the polynomial type. This paper attempts to solve the time-dependent Wigner equation in the presence of a general class of unbounded potentials by exploiting two equivalent forms of the pseudo-differential operator: integral form and series form (i.e., the Moyal expansion). The unbounded parts at infinities are approximated or modeled by polynomials and then a remaining localized potential dominates the central area. The fact that the Moyal expansion reduces to a finite series for polynomial potentials is fully utilized. In order to accurately resolve both the pseudo-differential operator and the linear differential operator, a spectral collocation scheme for the phase space and an explicit fourth-order Runge–Kutta time discretization are adopted. We are able to prove that the resulting full discrete spectral scheme conserves both mass and energy. Several typical quantum systems are simulated with a high accuracy and reliable estimation of macroscopically measurable quantities is thus obtained.


Wigner equation Moyal expansion Spectral method Quantum dynamics Unbounded potential Uncertainty principle Double-well Pöschl–Teller potential Anharmonic oscillator 

Mathematics Subject Classification

81Q05 65M70 81S30 45K05 82C10 



This research is supported by grants from the National Natural Science Foundation of China (Nos. 11471025, 11421101, 11822102). Z. C. is partially supported by Peking University Weng Hongwu original research fund (No. WHW201501). Y. X. is partially supported by The Elite Program of Computational and Applied Mathematics for PhD Candidates in Peking University. The authors are grateful to the useful discussions with Wei Cai, Jian Liu and Jing Shi.


  1. 1.
    Kierig, E., Schnorrberger, U., Schietinger, A., Tomkovic, J., Oberthaler, M.K.: Single-particle tunneling in strongly driven double-well potentials. Phys. Rev. Lett. 100, 190405 (2008)CrossRefGoogle Scholar
  2. 2.
    Weiner, J.H., Tse, S.T.: Tunneling in asymmetric double-well potentials. J. Chem. Phys. 74, 2419–2426 (1981)CrossRefGoogle Scholar
  3. 3.
    Ka, J., Shin, S.: Tunneling dynamics in a double-well: numerical studies with thermal wavepackets. J. Mol. Struct. 623, 23–30 (2003)CrossRefGoogle Scholar
  4. 4.
    Pilar, F.L.: Elementary Quantum Chemistry, 2nd edn. Dover Publications, New York (2013)Google Scholar
  5. 5.
    Tucherman, M.E., Perez, A.P., Muser, M.H.: A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. J. Chem. Phys. 130, 184105 (2009)CrossRefGoogle Scholar
  6. 6.
    Wigner, E.: On the quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)CrossRefGoogle Scholar
  7. 7.
    Tatarskiĭ, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26, 311–327 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)CrossRefGoogle Scholar
  9. 9.
    Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)CrossRefGoogle Scholar
  10. 10.
    Biegel, B.A.: Quantum Electronic Device Simulation. Ph.D. thesis, Stanford University (1997)Google Scholar
  11. 11.
    Ringhofer, C.: A spectral method for the numerical simulation of quantum tunneling phenomena. SIAM J. Numer. Anal. 27, 32–50 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shao, S., Lu, T., Cai, W.: Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport. Commun. Comput. Phys. 9, 711–739 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xiong, Y., Chen, Z., Shao, S.: An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 38, B491–B520 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)CrossRefGoogle Scholar
  15. 15.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2011)zbMATHGoogle Scholar
  16. 16.
    Thomann, A., BorzÌ, A.: Stability and accuracy of a pseudospectral scheme for the Wigner function equation. Numer. Methods Partial Differ. Equ. 33, 62–87 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Furtmaier, O., Succi, S., Mendoza, M.: Semi-spectral method for the Wigner equation. J. Comput. Phys. 305, 1015–1036 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bund, G.W., Tijero, M.C.: Mapping Wigner distribution functions into semiclassical distribution functions. Phys. Rev. A 61, 052114 (2000)CrossRefGoogle Scholar
  19. 19.
    Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971)zbMATHGoogle Scholar
  20. 20.
    Kaczor, U., Klimas, B., Szydlowski, D., Woloszyn, M., Spasak, B.J.: Phase-space description of the coherent state dynamics in a small one-dimensional system. Open Phys. 14, 354–359 (2016)CrossRefGoogle Scholar
  21. 21.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sellier, J.M., Dimov, I.: Wigner functions, signed particles, and the harmonic oscillator. J. Comput. Electron. 14, 907–915 (2015)CrossRefGoogle Scholar
  23. 23.
    Somorjai, R.L., Hornig, D.F.: Double-minimum potentials in hydrogen-bonded solids. J. Chem. Phys. 36, 1980–1987 (1962)CrossRefGoogle Scholar
  24. 24.
    Pruess, S., Fulton, C.T.: Mathematical software for Sturm–Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993)CrossRefGoogle Scholar
  25. 25.
    Shao, S., Cai, W., Tang, H.: Accurate calculation of Green’s function of the Schrödinger equation in a block layered potential. J. Comput. Phys. 219, 733–748 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Grabert, H., Weiss, U.: Quantum tunneling rates for asymmetric double-well systems. Phys. Rev. Lett. 54, 1605–1608 (1985)CrossRefGoogle Scholar
  27. 27.
    Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)CrossRefGoogle Scholar
  28. 28.
    Budaca, R.: Harmonic oscillator potential with a sextic anharmonicity in the prolate \(\gamma \)-rigid collective geometrical model. Phys. Lett. B 739, 56–61 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Heilbronner, E., Rutishauser, H., Gerson, F.: Eigenwerte, Eigenfunktionen und thermodynamische Funktionen des linearen Oszillators \(6^{\text{ ter }}\) Potenz. Helv. Chim. Acta 42, 2304–2314 (1959)CrossRefGoogle Scholar
  30. 30.
    Gerson, F.: Der eindimensionale Oszillator \(6^{\text{ ter }}\) Potenz als Basis für ein symmetrisches Doppelminimun-Problem. Helv. Chim. Acta 44, 471–476 (1961)CrossRefGoogle Scholar
  31. 31.
    Davis, M.J., Heller, E.J.: Comparisons of classical and quantum dynamics for initially localized states. J. Chem. Phys. 80, 5036–5048 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LMAM and School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations