A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems

  • Ruchi Guo
  • Tao LinEmail author
  • Yanping Lin


We present a new fixed mesh method for solving a class of interface inverse problems for the typical elliptic interface problems. These interface inverse problems are formulated as shape optimization problems. By an immersed finite element (IFE) method, both the governing partial differential equations and the objective functional for an interface inverse problem are discretized optimally regardless of the location of the interface in a chosen mesh, and the shape optimization for recovering the interface is reduced to a constrained optimization problem. The formula for the gradient of the objective function in this constrained optimization is derived and this formula can be implemented efficiently in the IFE framework. As demonstrated by three representative applications, the proposed IFE method can be employed to solve a spectrum of interface inverse problems efficiently.


Inverse problems Interface problems Shape optimization Discontinuous coefficients Immersed finite element methods 


  1. 1.
    Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for stokes interface problems. Comput. Methods Appl. Mech. Eng. 293, 170–190 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adjerid, S., Guo, R., Lin, T.: High degree immersed finite element spaces by a least squares method. Int. J. Numer. Anal. Model. 14(4–5), 604–626 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alessandrini, G., Isakov, V., Powell, J.: Local uniqueness in the inverse conductivity problem with one measurement. Trans. Am. Math. Soc. 347(8), 3031–3041 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Allaire, G., Dapogny, C., Frey, P.: Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282, 22–53 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Attetkov, A.V., Volkov, I.K., Tverskaya, E.S.: The optimum thickness of a cooled coated wall exposed to local pulseperiodic heating. J. Eng. Phys. Thermophys. 74(6), 1467–1474 (2001)CrossRefGoogle Scholar
  7. 7.
    Babuška, I., Osborn, J.E.: Can a Finite element method perform arbitrarily badly? Math. Comput. 69(230), 443–462 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bai, J., Cao, Y., He, X., Liu, H., Yang, X.: Modeling and an immersed finite element method for an interface wave equation. Comput. Math. Appl. 76(7), 1625–1638 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bejan, A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40(4), 799813–811816 (1997)CrossRefGoogle Scholar
  10. 10.
    Belhachmi, Z., Meftahi, H.: Shape sensitivity analysis for an interface problem via minimax differentiability. Appl. Math. Comput. 219(12), 6828 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bendsøe, M.P.: Optimization of Structural Topology, Shape, and Material. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Brenner, S.C., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts Applied Mathematics, 3rd edn. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Burger, M., Osher, S.J.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cantarero, A., Goldstein, T.: A fast method for interface and parameter estimation in linear elliptic PDES with piecewise constant coefficients (2013). Scholar
  16. 16.
    Carpentieri, G., Koren, B., van Tooren, M.J.L.: Adjoint-based aerodynamic shape optimization on unstructured meshes. J. Comput. Phys. 224(1), 267–287 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chan, T.F., Tai, X.-C.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, Z., Wu, Z., Xiao, Y.: An adaptive immersed finite element method with arbitrary lagrangian-eulerian scheme for parabolic equations in time variable domains. Int. J. Numer. Anal. Mod. 12(3), 567–591 (2015)MathSciNetGoogle Scholar
  19. 19.
    Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Chen, Z., Zou, J.: An augmented lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37(3), 892–910 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Choi, K.K., Chang, K.-H.: A study of design velocity field computation for shape optimal design. Finite Elem. Anal. Des. 15(4), 317–341 (1994)zbMATHCrossRefGoogle Scholar
  22. 22.
    Chow, S., Anderssen, R.S.: Determination of the transmissivity zonation using a linear functional strateg. Inverse Probl. 7, 841 (1991)zbMATHCrossRefGoogle Scholar
  23. 23.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Volume 16 of Classics Applied Mathematics. SIAM, Philadelphia (1996)CrossRefGoogle Scholar
  24. 24.
    Dunning, P.D., Kim, H.A., Mullineux, G.: Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid fem and structural optimization. Finite Elem. Anal. Des. 47(8), 933–941 (2011)CrossRefGoogle Scholar
  25. 25.
    Ewing, R.E.: Society for Industrial, and Applied Mathematics. The Mathematics of Reservoir Simulation, Volume 1. SIAM, Philadelphia (1983)CrossRefGoogle Scholar
  26. 26.
    Gao, T., Zhang, W.H., Zhu, J.H., Xu, Y.J., Bassir, D.H.: Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem. Anal. Des. 44(14), 805–813 (2008)CrossRefGoogle Scholar
  27. 27.
    Gautschi, W.: Numerical Analysis, 2nd edn. Springer/Birkhäuser, New York (2012)zbMATHCrossRefGoogle Scholar
  28. 28.
    Gersborg-Hansen, A., Bendsøe, M.P., Sigmund, O.: Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31(4), 251–259 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65(3), 393–415 (2000)zbMATHCrossRefGoogle Scholar
  30. 30.
    Gockenbach, M.S., Khan, A.A.: An abstract framework for elliptic inverse problems: Part 2. An augmented Lagrangian approach. Math. Mech. Solids 14(6):517–539 (2009;2008)zbMATHCrossRefGoogle Scholar
  31. 31.
    Guo, R., Lin, T.: A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal. (2017).
  32. 32.
    Guo, R., Lin, T., Zhang, X.: Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75(6), 2002–2016 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Harbrecht, H., Tausch, J.: On the numerical solution of a shape optimization problem for the heat equation. SIAM J. Sci. Comput. 35(1), A.104–A121 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  35. 35.
    He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24(5), 1265–1300 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8(2), 284–301 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hegemann, J., Cantarero, A., Richardson, C.L., Teran, J.M.: An explicit update scheme for inverse parameter and interface estimation of piecewise constant coefficients in linear elliptic PDES. SIAM J. Sci. Comput. 35(2), A1098–A1119 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Holder, D., Institute of Physics (Great Britain).: Electrical Impedance Tomography: Methods, History, and Applications. Institute of Physics Pub, Bristol (2005)Google Scholar
  40. 40.
    Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, Hoboken (2010)zbMATHCrossRefGoogle Scholar
  41. 41.
    Ito, K., Kunisch, K.: The augmented lagrangian method for parameter estimation in elliptic systems. SIAM J. Control Optim. 28(1), 113–136 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Ito, K., Kunisch, K., Li, Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Jang, G.-W., Kim, Y.Y.: Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation. Int. J. Solids Struct. 42(11), 3591–3609 (2005)zbMATHCrossRefGoogle Scholar
  44. 44.
    Ji, L., McLaughlin, J.R., Renzi, D., Yoon, J.-R.: Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography. Inverse Probl. 19(6), S1–S29 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kim, H., Querin, O.M., Steven, G.P., Xie, Y.M.: Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct. Multidiscip. Optim. 24(6), 441–448 (2002)CrossRefGoogle Scholar
  46. 46.
    Kim, N.H., Chang, Y.: Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput. Methods Appl. Mech. Eng. 194(30), 3291–3314 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Anal. 40(6), 745–777 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Lee, H.S., Park, C.J., Park, H.W.: Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parameterization. Comput. Methods Appl. Mech. Eng. 181(1), 1–20 (2000)zbMATHCrossRefGoogle Scholar
  49. 49.
    Li, Q., Steven, G.P., Xie, Y.M., Querin, O.M.: Evolutionary topology optimization for temperature reduction of heat conducting fields. Int. J. Heat Mass Transf. 47(23), 5071–5083 (2004)zbMATHCrossRefGoogle Scholar
  50. 50.
    Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20(3), 338–367 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Li, Z., Lin, T., Xiaohui, W.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Lin, M., Lin, T., Zhang, H.: Error analysis of an immersed finite element method for euler-bernoulli beam interface problems. Int. J. Numer. Anal. Model. 14, 822–841 (2017)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Lin, T., Lin, Y., Rogers, R., Lynne Ryan, M.: A rectangular immersed finite element space for interface problems. In: Scientific Computing and Applications (Kananaskis, AB, 2000), Volume 7 of Advanced Computer Theory Practice, pp. 107–114. Nova Science Publishers, Huntington (2001)Google Scholar
  54. 54.
    Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Lin, T., Zhang, X.: Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236(18), 4681–4699 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Lionheart, W.R.B.: Boundary shape and electrical impedance tomography. Inverse Probl. 14, 139 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Luo, Z., Wang, M.Y., Wang, S., Wei, P.: A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Methods Eng. 76(1), 1–26 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    McLaughlin, J.R., Zhang, N., Manduca, A.: Calculating tissue shear modulus and pressure by 2D log-elastographic methods. Inverse Probl. 26(8), 085007 (2010)zbMATHCrossRefGoogle Scholar
  59. 59.
    Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36(1), 255–279 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Najafi, A.R., Safdari, M., Tortorelli, D.A., Geubelle, P.H.: A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput. Methods Appl. Mech. Eng. 296, 1–17 (2015)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Nanthakumar, S.S., Lahmer, T., Rabczuk, T.: Detection of flaws in piezoelectric structures using extended fem. Int. J. Numer. Methods Eng. 96(6), 373–389 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research, second edn. Springer, Berlin (2006)Google Scholar
  63. 63.
    Novotny, A.A., Canelas, A., Laurain, A.: A non-iterative method for the inverse potential problem based on the topological derivative. In: Hintermüller, M., Leugering, G., Sokołowski, J. (eds.) Technical Report for Mini-Workshop: Geometries, Shapes and Topologies in PDE-based Applications, 57/2012, pp. 3383–3387. Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach (2012)Google Scholar
  64. 64.
    Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Heidelberg (2013)zbMATHCrossRefGoogle Scholar
  65. 65.
    Peng, X., Niakhai, K., Protas, B.: A method for geometry optimization in a simple model of two-dimensional heat transfer. SIAM J. Sci. Comput. 35(5), B.1105–B1131 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33(3), 1181–1211 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Rabinovich, D., Givoli, D., Vigdergauz, S.: XFEM-based crack detection scheme using a genetic algorithm. Int. J. Numer. Methods Eng. 71(9), 1051–1080 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Ródenas, J.J., Fuenmayor, F.J., Tarancón, J.E.: A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis. Int. J. Numer. Methods Eng. 59(13), 1725–1747 (2004)zbMATHCrossRefGoogle Scholar
  69. 69.
    Sasikumar, M., Balaji, C.: Optimization of convective fin systems: a holistic approach. Heat Mass Transf. 39(1), 57–68 (2002)CrossRefGoogle Scholar
  70. 70.
    Sattinger, D.H., Tracy, C.A., Venakides, S.: Inverse Scattering and Applications, Volume 122. American Mathematical Society, Providence (1991)CrossRefGoogle Scholar
  71. 71.
    Schnur, D.S., Zabaras, N.: An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Eng. 33(10), 2039–2057 (1992)zbMATHCrossRefGoogle Scholar
  72. 72.
    Soghrati, S., Aragón, A.M., Armando Duarte, C., Geubelle, P.H.: An interface-enriched generalized fem for problems with discontinuous gradient fields. Int. J. Numer. Methods Eng. 89(8), 991–1008 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Suzuki, K., Kikuchi, N.: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93(3), 291–318 (1991)zbMATHCrossRefGoogle Scholar
  74. 74.
    van Keulen, F., Haftka, R.T., Kim, N.H.: Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput. Methods Appl. Mech. Eng. 194(30), 3213–3243 (2005)zbMATHCrossRefGoogle Scholar
  75. 75.
    Waisman, H., Chatzi, E., Smyth, A.W.: Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. Int. J. Numer. Methods Eng. 82, 303–328 (2010)zbMATHGoogle Scholar
  76. 76.
    Wei, P., Wang, M.Y., Xing, X.: A study on X-FEM in continuum structural optimization using a level set model. Comput. Aided Des. 42(8), 708–719 (2010)CrossRefGoogle Scholar
  77. 77.
    Yeh, W.W.: Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour. Res. 22(2), 95–108 (1986)CrossRefGoogle Scholar
  78. 78.
    Zhang, H., Lin, T., Lin, Y.: Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents. Int. J. Numer. Anal. Mod. 15, 48–73 (2018)MathSciNetGoogle Scholar
  79. 79.
    Zhang, J., Zhang, W.H., Zhu, J.H., Xia, L.: Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput. Methods Appl. Mech. Eng. 245–246, 75–89 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Zhang, X.: Nonconforming Immersed Finite Element Methods for Interface Problems. Ph.D. Thesis, Virginia Polytechnic Institute and State University (2013)Google Scholar
  81. 81.
    Zhang, Y., Liu, S., Qiao, H.: Design of the heat conduction structure based on the topology optimization. Developments in Heat Transfer, Chap. 26. IntechOpen (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsVirginia TechBlacksburgUSA
  2. 2.Department of Applied MathematicsHong Kong Polytechnic UniversityKowloonChina

Personalised recommendations