Advertisement

Journal of Scientific Computing

, Volume 77, Issue 3, pp 1621–1659 | Cite as

Globally Divergence-Free Discontinuous Galerkin Methods for Ideal Magnetohydrodynamic Equations

  • Pei Fu
  • Fengyan Li
  • Yan Xu
Article

Abstract

Ideal magnetohydrodynamic (MHD) equations are widely used in many areas in physics and engineering, and these equations have a divergence-free constraint on the magnetic field. In this paper, we propose high order globally divergence-free numerical methods to solve the ideal MHD equations. The algorithms are based on discontinuous Galerkin methods in space. The induction equation is discretized separately to approximate the normal components of the magnetic field on elements interfaces, and to extract additional information about the magnetic field when higher order accuracy is desired. This is then followed by an element by element reconstruction to obtain the globally divergence-free magnetic field. In time, strong-stability-preserving Runge–Kutta methods are applied. In consideration of accuracy and stability of the methods, a careful investigation is carried out, both numerically and analytically, to study the choices of the numerical fluxes associated with the electric field at element interfaces and vertices. The resulting methods are local and the approximated magnetic fields are globally divergence-free. Numerical examples are presented to demonstrate the accuracy and robustness of the methods.

Keywords

MHD equations Divergence-free magnetic field Discontinuous Galerkin methods H(div)-conforming finite element spaces Fourier analysis 

References

  1. 1.
    Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174(2), 614–648 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151(1), 149–184 (2004)CrossRefGoogle Scholar
  3. 3.
    Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228(14), 5040–5056 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229(6), 1970–1993 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers. J. Comput. Phys. 336, 104–127 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149(2), 270–292 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brackbill, J., Barnes, D.: The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brezzi, F., Fortin, M., Marini, L.D., et al.: Efficient rectangular mixed finite elements in two and three space variables. ESAIM Math. Model. Numer. Anal. 21(4), 581–604 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dai, W., Woodward, P.R.: A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys. 142(2), 331–369 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659–677 (1988)CrossRefGoogle Scholar
  20. 20.
    Gardiner, T.A., Stone, J.M.: An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys. 205(2), 509–539 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)zbMATHGoogle Scholar
  23. 23.
    Jiang, G.-S., Wu, C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150(2), 561–594 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, Berlin (2005)Google Scholar
  25. 25.
    Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(1), 413–442 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231(6), 2655–2675 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230(12), 4828–4847 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, S.: High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method. J. Comput. Phys. 227(15), 7368–7393 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, S.: A fourth-order divergence-free method for MHD flows. J. Comput. Phys. 229(20), 7893–7910 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Powell, K.G.: An Approximate Riemann Solver for Magnetohydrodynamics (that works in more than one dimension). ICASE report No. 94-24, Langley (1994)Google Scholar
  31. 31.
    Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Dold, A., Eckmann, B. (eds.) Mathematical Aspects of Finite Element Methods. Proceedings of the Conference Held in Rome, 10-12 Dec, 1975. Lecture Notes in Mathematics, vol. 606 (1977). Springer, Berlin, Heidelberg (1977)Google Scholar
  33. 33.
    Reed, W. H., Hill, T. R.: Triangular Mesh Methods for the Neutron Transport Equation, Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory (1973)Google Scholar
  34. 34.
    Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  35. 35.
    Rossmanith, J. A.: High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport for ideal MHD. arXiv preprint arXiv:1310.4251, (2013)
  36. 36.
    Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49(179), 105–121 (1987)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tóth, G.: The \(\nabla \cdot \mathbf{B}\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161(2), 605–652 (2000)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yakovlev, S., Xu, L., Li, F.: Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Sci. 4(1), 80–91 (2013)CrossRefGoogle Scholar
  39. 39.
    Yang, H., Li, F.: Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations. ESAIM Math. Model. Numer. Anal. 50(4), 965–993 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRefGoogle Scholar
  41. 41.
    Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations