Advertisement

Journal of Scientific Computing

, Volume 77, Issue 3, pp 1424–1443 | Cite as

Hybrid Discretization Methods with Adaptive Yield Surface Detection for Bingham Pipe Flows

  • Karol L. Cascavita
  • Jérémy Bleyer
  • Xavier Chateau
  • Alexandre Ern
Article

Abstract

We devise a hybrid low-order method for Bingham pipe flows, where the velocity is discretized by means of one unknown per mesh face and one unknown per mesh cell which can be eliminated locally by static condensation. The main advantages are local conservativity and the possibility to use polygonal/polyhedral meshes. We exploit this feature in the context of adaptive mesh refinement to capture the yield surface by means of local mesh refinement and possible coarsening. We consider the augmented Lagrangian method to solve iteratively the variational inequalities resulting from the discrete Bingham problem, using piecewise constant fields for the auxiliary variable and the associated Lagrange multiplier. Numerical results are presented in pipes with circular and eccentric annulus cross-section for different Bingham numbers.

Keywords

Hybrid discretization Yield fluids Local mesh refinement Augmented Lagrangian 

References

  1. 1.
    Balmforth, N.J., Frignard, I.A., Ovarlez, G.: Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121–146 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartels, S., Milicevic, M.: Alternating direction method of multipliers with variable step sizes. Available: https://aam.uni-freiburg.de/agba/prof/preprints/BarMil17-pre.pdf (2017). Accessed Jan 2018
  3. 3.
    Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Comput. Fluids 61, 77–85 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bercovier, M., Engelman, M.: A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36(3), 313–326 (1980)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bingham, E.C.: Fluidity and Platicity. McGraw-Hill, New York (1922)Google Scholar
  7. 7.
    Bleyer, J.: Advances in the simulation of viscoplastic fluid flows using interior-point methods. Comput. Methods Appl. Mech. Eng. 330, 368–394 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bleyer, J., Maillard, M., de Buhan, P., Coussot, P.: Efficient numerical computations of yield stress fluid flows using second-order cone programming. Comput. Methods Appl. Mech. Eng. 283, 599–614 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cicuttin, M., Di Pietro, D.A., Ern, A.: Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math. (2017).  https://doi.org/10.1016/j.cam.2017.09.017 CrossRefzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Coussot, P.: Bingham’s heritage. Rheol. Acta 6, 163–176 (2016)Google Scholar
  16. 16.
    Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham visco-plastic flow: old and new results. J. Non-Newton. Fluid Mech. 142(1), 36–62 (2007)CrossRefGoogle Scholar
  17. 17.
    Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976). Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219CrossRefGoogle Scholar
  22. 22.
    Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Volume 15 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1983). Translated from the French by B. Hunt and D. C. Spicer, Applications to the Numerical Solution of Boundary Value ProblemsGoogle Scholar
  25. 25.
    Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Volume 1749 of Lecture Notes in Mathematics. Springer, Berlin (2000)CrossRefGoogle Scholar
  26. 26.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)CrossRefGoogle Scholar
  27. 27.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York (1984)CrossRefGoogle Scholar
  28. 28.
    Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics, Volume 9 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)CrossRefGoogle Scholar
  29. 29.
    Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities, Volume 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1981). Translated from the FrenchCrossRefGoogle Scholar
  30. 30.
    Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér 9(R–2), 41–76 (1975)MathSciNetzbMATHGoogle Scholar
  31. 31.
    He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optimi. Theory Appl. 4, 303–320 (1969)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Latché, J.-C., Vola, D.: Analysis of the Brezzi–Pitkäranta stabilized Galerkin scheme for creeping flows of Bingham fluids. SIAM J. Numer. Anal. 42(3), 1208–1225 (2004)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mosolov, P.P., Miasnikov, V.P.: Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. 29(3), 545–577 (1965)CrossRefGoogle Scholar
  35. 35.
    Mosolov, P.P., Miasnikov, V.P.: On stagnant flow regions of a viscous-plastic medium in pipes. J. Appl. Math. Mech. 30(4), 841–854 (1966)CrossRefGoogle Scholar
  36. 36.
    Mosolov, P.P., Miasnikov, V.P.: On qualitative singularities of the flow of a viscoplastic medium in pipes. J. Appl. Math. Mech. 31(3), 609–613 (1967)CrossRefGoogle Scholar
  37. 37.
    Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin methods for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Oldroyd, J.G.: A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Cambr. Philos. Soc. 43, 100–105 (1947)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Papanastasiou, T.C.: Flows of materials with yield. J. Rheol. 31(5), 385–404 (1987)CrossRefGoogle Scholar
  40. 40.
    Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Symposium of Optimization, University Keele, Keele, 1968, pp. 283–298. Academic Press, London (1969)Google Scholar
  41. 41.
    Roquet, N., Saramito, P.: An adaptive finite element method for Bingham fluid flows around a cylinder. Comput. Methods Appl. Mech. Eng. 192(31–32), 3317–3341 (2003)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Saramito, P., Roquet, N.: An adaptive finite element method for viscoplastic fluid flows in pipes. Comput. Methods Appl. Mech. Eng. 190(40), 5391–5412 (2001)CrossRefGoogle Scholar
  43. 43.
    Saramito, P., Wachs, A.: Progress in numerical simulation of yield stress fluid flows. Rheol. Acta 56(3), 211–230 (2017)CrossRefGoogle Scholar
  44. 44.
    Szabo, P., Hassager, O.: Flow of viscoplastic fluids in eccentric annular geometries. J. Non-Newton. Fluid Mech. 45, 149–169 (1992)CrossRefGoogle Scholar
  45. 45.
    Treskatis, T., Moyers-González, M.A., Price, C.J.: An accelerated dual proximal gradient method for applications in viscoplasticity. J. Non-Newton. Fluid Mech. 238, 115–130 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  47. 47.
    Wachs, A.: Numerical simulaiton of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods. J. Non-Newton. Fluid Mech. 142, 183–198 (2007)CrossRefGoogle Scholar
  48. 48.
    Wang, Y.: Tracking of the yield surfaces of laminar viscoplastic flows in noncircular ducts using an adaptive scheme. Proc. Nat. Sci. Counc. ROC(A) 23(2), 311–318 (1999)Google Scholar
  49. 49.
    Zhang, J.: An augmented Lagrangian approach to simulating yield stress fluid flows around a spherical gas bubble. Int. J. Numer. Methods Fluids 69(3), 731–746 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Paris-Est, CERMICS (ENPC)Marne la Vallée Cedex 2France
  2. 2.INRIA ParisParisFrance
  3. 3.NAVIER, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPEChamps-sur-MarneFrance

Personalised recommendations