Advertisement

Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous Galerkin Spectral Elements

  • David A. KoprivaEmail author
  • Florian J. Hindenlang
  • Thomas Bolemann
  • Gregor J. Gassner
Article
  • 39 Downloads

Abstract

The under integration of the volume terms in the discontinuous Galerkin spectral element approximation introduces errors at non-conforming element faces that do not cancel and lead to free-stream preservation errors. We derive volume and face conditions on the geometry under which a constant state is preserved. From those, we catalog eight constraints on the geometry that preserve a constant state. Numerical examples are presented to illustrate the results.

Keywords

Discontinuous Galerkin Spectral element Free-stream preservation Non-conforming 

Notes

Acknowledgements

This work was supported by a grant from the Simons Foundation (#426393, David Kopriva). G.G and T.B. have been supported by the European Research Council (ERC) under the European Union’s Eights Framework Program Horizon 2020 with the research project Extreme, ERC grant agreement no. 714487. DAK would like to thank Mr. Andres Rueda for his helpful comments during the preparation of this paper.

References

  1. 1.
    Allaneau, Y., Jameson, A.: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200(49–52), 3628–3636 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bjontegaard, T., Ronquist, E.M., Trasdahl, O.: Spectral approximation of partial differential equations in highly distorted domains. J. Sci. Comput. 52(3), 603–618 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bui-Tanh, T., Ghattas, O.: Analysis of an \(hp\)-nonconforming discontinuous Galerkin spectral element method for wave propagation. SIAM J. Numer. Anal. 50(3), 1801–1826 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Del Rey Fernandez, D.C., Gassner, G.J., Parsani, M., Carpenter, M.H., Friedrich, L., Winters, A.R.: An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property. J. Sci. Comput. 77(2), 689–725 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fortunato, M., Persson, P.-O.: High-order unstructured curved mesh generation using the Winslow equations. J. Comput. Phys. 307, 1–14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77(1), 154–200 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and their applications to mesh generation. Int. J. Numer. Methods Eng. 7, 461–477 (1973)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hindenlang, F., Bolemann, T., Munz, C-D.: Mesh curving techniques for high order discontinuous Galerkin simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, pp. 133–152. Springer, Berlin (2015)Google Scholar
  12. 12.
    Hindenlang, F.: Mesh Curving Techniques for High Order Parallel Simulations on Unstructured Meshes. Ph.D. thesis, University of Stuttgart (2014)Google Scholar
  13. 13.
    Johnen, A., Remacle, J.-F., Geuzaine, C.: Geometrical validity of high-order triangular finite elements. Eng. Comput. 30(3), 375–382 (2014)CrossRefGoogle Scholar
  14. 14.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kopera, M.A., Giraldo, F.X.: Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible euler equations with application to atmospheric simulations. J. Comput. Phys. 275, 92–117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kopriva, D.A.: A conservative staggered-grid Chebyshev multidomain method for compressible flows II. A semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53(1), 105–122 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)Google Scholar
  21. 21.
    Kopriva, D.A.: A polynomial spectral calculus for analysis of DG spectral element methods. In: Hesthaven, J., Bittencourt, M., Dumont, N. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, vol 119, pp. 21–40. Springer, Cham (2017)Google Scholar
  22. 22.
    Kopriva, D.A.: Stability of overintegration methods for nodal discontinuous Galerkin spectral element methods. J. Sci. Comput. 76(1), 426–442 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kopriva, D.A., Gassner, G.J.: Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable. Appl. Math. Comput. 272, 2:274–290 (2016)MathSciNetGoogle Scholar
  24. 24.
    Korczak, K.Z., Patera, A.T.: An isoparametric spectral element method for solution of the Navier–Stokes equations in complex-geometry. J. Comput. Phys. 62(2), 361–382 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kovalev, K.: Unstructured Hexahedral Non-conformal Mesh Generation. Ph.D. thesis, Faculty of Engineering Vrije Universiteit Brussel Belgium (2005)Google Scholar
  26. 26.
    Kozdon, J.E., Wilcox, L.C.: An energy stable approach for discretizing hyperbolic equations with nonconforming discontinuous Galerkin methods. J. Sci. Comput. 76(3), 1742–1784 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lovgren, A.E., Maday, Y., Ronquist, E.M.: Global \(c^1\) maps on general domains. Math. Models Methods Appl. Sci. 19(5), 803–832 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mengaldo, G., De Grazia, D., Vincent, P.E., Sherwin, S.J.: On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67(3), 1272–1292 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mengaldo, G., De Grazia, D., Moxey, D., Vincent, P.E., Sherwin, S.J.: Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Moxey, D., Hazan, M., Sherwin, S.J., Peiro, J.: Curvilinear mesh generation for boundary layer problems. In: Norbert, K., Charles, H., Francesco, B., Craig, J., Koen, H. (eds.) IDIHOM: Industrialization of High-Order Methods—A Top-Down Approach, volume 128 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 41–64. Springer, Berlin (2015)Google Scholar
  31. 31.
    Nelson, D. A.W.: High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. Ph.D. thesis, University of California at San Diego (2015)Google Scholar
  32. 32.
    Nonomura, T., Iizuka, N., Fujii, K.: Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Comput. Fluids 39(2), 197–214 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Patera, A.T.: A spectral element method for fluid dynamics—laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)CrossRefzbMATHGoogle Scholar
  34. 34.
    Persson, P.-O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198(17–20), 1585–1595 (2009)CrossRefzbMATHGoogle Scholar
  35. 35.
    Persson, P.-O., Peraire, J.: Curved mesh generation and mesh refinement using lagrangian solid mechanics. (Preprint) (2009)Google Scholar
  36. 36.
    Staten, M.L., Shepherd, J.F., Ledoux, F., Shimada, K.: Hexahedral mesh matching: converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces. Int. J. Numer. Methods Eng. 82(12), 1475–1509 (2010)zbMATHGoogle Scholar
  37. 37.
    Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Visbal, M.R., Gaitonde, D.V.: High-order accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999)CrossRefGoogle Scholar
  39. 39.
    Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Winters, A.R., Gassner, G.J., Zingg, D.W., Friedrichs, L., Fernández, D.C.D.R., Hicken, J.: Conservative and stable degree preserving SBP operators for non-conforming meshes. J. Sci. Comput. 75(2), 657–686 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K.: The generation of arbitrary order curved meshes for 3d finite element analysis. Comput. Mech. 51(3), 361–374 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhang, B., Liang, C.: A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains. J. Comput. Phys. 295, 147–160 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Florida State UniversityTallahasseeUSA
  2. 2.Max Planck Institute for Plasma PhysicsGarchingGermany
  3. 3.Institute for Aerodynamics and Gas DynamicsUniversity of StuttgartStuttgartGermany
  4. 4.Mathematical Institute and Center for Data and Simulation ScienceUniversity of CologneCologneGermany

Personalised recommendations