Skip to main content
Log in

Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We design a class of Weighted Power-ENO (Essentially Non-Oscillatory) schemes to approximate the viscosity solutions of Hamilton-Jacobi (HJ) equations. The essential idea of the Power-ENO scheme is to use a class of extended limiters to replace the minmod type limiters in the classical third-order ENO schemes so as to improve resolution near kinks where the solution has discontinuous gradients. Then a weighting strategy based on appropriate smoothness indicators lifts the scheme to be fifth-order accurate. In particular, numerical examples indicate that the Weighted Power_{3ENO5 works for general HJ equations while the Weighted Power_{\inftyENO5 works for non-linear convex HJ equations. Numerical experiments also demonstrate the accuracy and the robustness of the new schemes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall R. (1996). Numerical discretization of the first-order Hamilton-Jacobi equations on triangular meshes. Comm. Pure Appl. Math. 49:1339–1377

    Article  MATH  MathSciNet  Google Scholar 

  2. Albert S., Cockburn B., French D., Peterson T. (2002). A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations Part I: the steady state case. Math. Comp 71:49–76

    Article  MATH  MathSciNet  Google Scholar 

  3. Bryson S., Levy D. (2003). High-order central WENO schemes for multi-dimensional Hamilton-Jacobi equations. SIAM J. Num. Anal 41:1339–1369

    Article  MATH  MathSciNet  Google Scholar 

  4. Cecil T., Qian J., Osher S.J. (2004). Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J. Comp. Phys 196:327–347

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn B., Qian J. (2002). Continuous dependence results for Hamilton-Jacobi equations. In: Estep D., Tavener S (eds). Collected Lectures on the Preservation of Stability Under Discretization. SIAM, Philadelphia, PA, pp. 67–90

    Google Scholar 

  6. Cockburn B., Yenikaya B. (2005). An adaptive method with rigorous error control for the Hamilton-Jacobi equations Part. I: the one dimensional steady state case. Appl. Numer. Math. 52(2–3): 175–195

    Article  MATH  MathSciNet  Google Scholar 

  7. Corrias L., Falcone M., Natalini R. (1995). Numerical schemes for conservation laws via Hamilton-Jacobi equations. Math. Comp 64:555–580

    MATH  MathSciNet  Google Scholar 

  8. Crandall M., Lions P. (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277:1–42

    Article  MATH  MathSciNet  Google Scholar 

  9. Crandall M., Lions P. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput 43:1–19

    Article  MATH  MathSciNet  Google Scholar 

  10. Falcone M., Ferretti R. (1994). Discrete time high order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math 67:315–344

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb S., Shu C.W., Tadmor E. (2001). Strong stability preserving high-order time discretization methods. SIAM Rev. 43:89–112

    Article  MATH  MathSciNet  Google Scholar 

  12. Harten A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49:357–393

    Article  MATH  MathSciNet  Google Scholar 

  13. Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high-order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71:231–303

    Article  MATH  MathSciNet  Google Scholar 

  14. Jiang G.S., Peng D. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21:2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang G.S., Shu C.W. (1996). Efficient Implementation of weighted ENO schemes. J. Comput. Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  16. Jin S., Xin ZP. (1998). Numerical passage from systems of conservation laws to Hamilton-Jacobi Equations and relaxation schemes. SIAM J. Numer. Anal. 35:2385–2404

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin C.T., Tadmor E. (2000). High-resolution non-oscillatory central schemes for Hamilton-Jacobi Equations. SIAM J. Sci. Comput 21:2163–2186

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu X-D., Osher S.J., Chan T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys 115:200–212

    Article  MathSciNet  MATH  Google Scholar 

  19. Osher S.J., Sethian J. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  20. Osher S.J., Shu C.W. (1991). High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28:907–922

    Article  MATH  MathSciNet  Google Scholar 

  21. Qiu J., Shu C.W. (2005). Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys. 204: 82–99

    Article  MATH  MathSciNet  Google Scholar 

  22. Serna S., Marquina A. (2004). Power ENO Methods: a fifth-order accurate Weighted Power ENO method. J. Comput. Phys. 194:632–658

    Article  MATH  MathSciNet  Google Scholar 

  23. Shu C.W., Osher S.J. (1989). Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys 83:32–78

    Article  MATH  MathSciNet  Google Scholar 

  24. Souganidis P.E. (1985). Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Diff. Eqn 59:1–43

    Article  MATH  MathSciNet  Google Scholar 

  25. Spiteri R.J., Ruuth S.J. (2002). A new class of optimal high order strong stability preserving time discretization methods. SIAM J. Num. Anal 40:469–491

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang Y.T., Shu C.W. (2003). High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput 24:1005–1030

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Serna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serna, S., Qian, J. Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations. J Sci Comput 29, 57–81 (2006). https://doi.org/10.1007/s10915-005-9015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9015-2

Keywords

Navigation