Advertisement

Evolution of Appendicular Specializations for Fossoriality in Euryzygomatomyine Spiny Rats across Different Brazilian Biomes (Echimyidae, Hystricognathi, Rodentia)

  • William Corrêa TavaresEmail author
  • Jean Hickel Vozniak
  • Leila Maria Pessôa
Original Paper
  • 13 Downloads

Abstract

The evolution of subterranean and fossorial rodents has been linked to the Neogene climatic shift to xeric conditions leading to open vegetation, like prairies and grasslands; most modern subterranean rodents occur in arid and open areas. Among South American spiny rats (family Echimyidae), the subfamily Euryzygomatomyinae includes both fossorial (Clyomys and Euryzygomatomys) and ambulatorial (Trinomys) genera, some of them endemic to open vegetated areas and other ones restricted to forested regions. The closely related genus Carterodon is also a fossorial rodent endemic to open vegetated areas. If the open environments constitute a determinant factor triggering the evolution of fossoriality in these spiny rats, it is expected that the fossorial lineages evolving since the Miocene in open environments (Carterodon sulcidens and Clyomys laticeps) show morphologies more specialized for digging than those currently restricted to Atlantic Forest habitats (Euryzygomatomys spinosus). Moreover, it is likely that Trinomys species specialized for xeric environments (T. albispinus and T. yonenagae) show incipient adaptations for fossoriality. The appendicular skeleton of three fossorial and five ambulatorial echimyid species were morphometrically analyzed with multivariate statistical approaches in order to test these presuppositions. The analyses showed that the appendicular morphology of T. yonenagae and T. albispinus, in comparison with the Atlantic Forest Trinomys species, and of C. sulcidens and C. laticeps in relation to E. spinosus are more adapted to scratch-digging activities, corroborating the hypothesis that open environments favor the evolution of fossoriality in spiny rats.

Keywords

Atlantic Forest Caatinga Caviomorpha Cerrado Locomotor specializations Octodontoidea 

Notes

Acknowledgements

We are grateful to the curator J.A. Oliveira for allowing access to the mammalian collection of the Museu Nacional, Universidade Federal do Rio de Janeiro. This work was supported by a postdoctoral fellowship to WCT provided by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—FAPERJ/CAPES (Grant E26/202.171/15), and by a research fellowships to LMP provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant 308505/2016-6).

Supplementary material

10914_2019_9459_MOESM1_ESM.docx (15 kb)
Tables S1 P-values of pair-wise post-hoc Tukey test of ANOVA on overall size estimates. P-values <0.05 are shown in bold font. Eu.s: Euryzygomatomys spinosus; Cl.l: Clyomys laticeps; Ca.s: Carterodon sulcidens; Tr.e: Trinomys eliasi; Tr.y: Trinomys yonenagae; Tr.a: Trinomys albispinus; Tr.d: Trinomys dimidiatus; Tr.g: Trinomys gratiosus (DOCX 15 kb)
10914_2019_9459_MOESM2_ESM.docx (22 kb)
Tables S2 Classification matrixes from DFAsizes, DFAforelimb, DFAscapula and DFAhind limb. Rows show a priori classification and columns show a posteriori classification. Eu.s: Euryzygomatomys spinosus; Cl.l: Clyomys laticeps; Ca.s: Carterodon sulcidens; Tr.e: Trinomys eliasi; Tr.y: Trinomys yonenagae; Tr.a: Trinomys albispinus; Tr.d: Trinomys dimidiatus; Tr.g: Trinomys gratiosus (DOCX 22 kb)

References

  1. Alhajeri BH (2016) A phylogenetic test of the relationship between saltation and habitat openness in gerbils (Gerbillinae, Rodentia). Mammal Res 61:231–241.  https://doi.org/10.1007/s13364-016-0264-2 Google Scholar
  2. Alhajeri BH, Hunt OJ, Steppan SJ (2015) Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla. J Zool Syst Evol Res 53:312–330.  https://doi.org/10.1111/jzs.12102 Google Scholar
  3. Alhajeri BH, Steppan SJ (2016) Association between climate and body size in rodents: a phylogenetic test of Bergmann’s rule. Mammal Biol 81:219–225.  https://doi.org/10.1016/j.mambio.2015.12.001 Google Scholar
  4. Alhajeri BH, Steppan SJ (2018) A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents. J Mammal.  https://doi.org/10.1093/jmammal/gyy099
  5. Álvarez A, Moyers Arévalo RL, Verzi DH (2017) Diversification patterns and size evolution in caviomorph rodents. Biol J Linn Soc 121:907–922.  https://doi.org/10.1093/biolinnean/blx026 Google Scholar
  6. Bezerra AMR, Bonvicino CR (2015) Genus Clyomys Thomas, 1916. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). University of Chicago Press, Chicago, pp 935–937Google Scholar
  7. Bezerra AMR, Marinho-Filho J, Carmignotto AP (2011) A review of the distribution, morphometrics, and habit of owl’s spiny rat Carterodon sulcidens (Lund, 1841) (Rodentia: Echimyidae). Zool Stud 50:566–576Google Scholar
  8. Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, Zenuto RR (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton. JL, Ghalambor CK (eds) Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 183–226Google Scholar
  9. Candela A (2015) Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents. Acta Palaeontol Pol 61:455–468.  https://doi.org/10.4202/app.00113.2014 Google Scholar
  10. Coutinho LC, Oliveira JA, Pessôa LM (2013) Morphological variation in the appendicular skeleton of Atlantic Forest sigmodontine rodents. J Morphol 274:779–792.  https://doi.org/10.1002/jmor.20134 Google Scholar
  11. Davis DE (1945) The annual cycle of plants, mosquitoes, birds, and mammals in two Brazilian forests. Ecol Monogr 15:243–295.  https://doi.org/10.2307/1943247 Google Scholar
  12. Davis DE (1947) Notes on the life history of some Brazilian rodents. Bol do Mus Nac Rio Janeiro, Nov Série, Zool 76:1–8Google Scholar
  13. Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool 262:145–159.  https://doi.org/10.1017/S0952836903004485 Google Scholar
  14. Emmons LH (2005) A revision of the genera of arboreal Echimyidae (Rodentia: Echimyidae, Echimyinae), with descriptions of two new genera. In: Lacey EA, Myers P (eds) Mammalian Diversification: From Chromosomes to Phylogeography. University of California Press, Berkley, pp 247–309Google Scholar
  15. Fabre P-H, Upham NS, Emmons LH, Justy F, Leite YLR, Loss AC, Orlando L, Tilak M-K, Patterson BD, Douzery EJP (2016) Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Mol Biol Evol 34:msw261.  https://doi.org/10.1093/molbev/msw261 Google Scholar
  16. Galewski T, Mauffrey J-F, Leite YLR, Patton JL, Douzery EJP (2005) Ecomorphological diversification among South American spiny rats (Rodentia; Echimyidae): a phylogenetic and chronological approach. Mol Phylogenet Evol 34:601–615.  https://doi.org/10.1016/j.ympev.2004.11.015 Google Scholar
  17. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9.  https://doi.org/10.1016/j.bcp.2008.05.025 Google Scholar
  18. Hildebrand M (1988) Analysis of Vertebrate Structure, 3rd edn. John Wiley & Sons, Inc, New YorkGoogle Scholar
  19. Hopkins SSB, Davis EB (2009) Quantitative morphological proxies for fossoriality in small mammals. J Mammal 90:1449–1460.  https://doi.org/10.1644/08-MAMM-A-262R1.1 Google Scholar
  20. Jolicoeur P (1963) The multivariate generalization of the allometry equation. Biometrics 19:497–499.  https://doi.org/10.2307/2527939 Google Scholar
  21. Kotler BP (1984) Risk of predation and the structure of desert rodent communities. Ecology 65:689–701.  https://doi.org/10.2307/1938041 Google Scholar
  22. Lagaria A, Youlatos D (2006) Anatomical correlates to scratch digging in the forelimb of European ground squirrels (Spermophilus citellus). J Mammal 87:563–570.  https://doi.org/10.1644/05-MAMM-A-251R1.1 Google Scholar
  23. Lehmann WH (1963) The forelimb architecture of some fossorial rodents. J Morphol 113:59–76.  https://doi.org/10.1002/jmor.1051130105 Google Scholar
  24. Leite RN, Kolokotronis S-O, Almeida FC, Wernek FP, Rogers DS, Weksler M (2014) In the wake of invasion: tracing the historical biogeography of the South American cricetid radiation (Rodentia, Sigmodontinae). PLoS One 9:e100687.  https://doi.org/10.1371/journal.pone.0100687 Google Scholar
  25. Loss AC, Pacheco MAC, Leite YLR, Caldara-Junior V, Lessa LG (2015) Range extension and first record of Euryzygomatomys spinosus (Rodentia, Echimyidae) in the Brazilian Cerrado. Check List 11:1742.  https://doi.org/10.15560/11.5.1742 Google Scholar
  26. Manaf P, Morato S, Spinelli Oliveira E (2003) Profile of wild Neotropical spiny rats (Trinomys, Echimyidae) in two behavioral tests. Physiol Behav 79:129–133.  https://doi.org/10.1016/S0031-9384(03)00121-5 Google Scholar
  27. Mandelik Y, Jones M, Dayan T (2003) Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol Ecol Res 5:501–515Google Scholar
  28. McEvoy JS (1982) Comparative myology of the pectoral and pelvic appendages of the North American porcupine (Erethizon dorsatum) and the prehensile-tailed porcupine (Coendou prehensilis). Bull Am Mus Nat Hist 173: 337–421Google Scholar
  29. Moojen J (1952) Os roedores do Brasil. Instituto Nacional do Livro, Rio de JaneiroGoogle Scholar
  30. Morgan CC (2009) Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): form, function and phylogeny. Mammal Biol 74:497–506.  https://doi.org/10.1016/j.mambio.2008.09.006 Google Scholar
  31. Morgan CC, Álvarez A (2013) The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. J Zool 290:107–116.  https://doi.org/10.1111/jzo.12017 Google Scholar
  32. Morgan CC, Verzi DH (2011) Carpal-metacarpal specializations for burrowing in South American octodontoid rodents. J Anat 219:167–175.  https://doi.org/10.1111/j.1469-7580.2011.01391.x Google Scholar
  33. Morgan CC, Verzi DH (2006) Morphological diversity of the humerus of the South American subterranean rodent Ctenomys (Rodentia, Ctenomyidae). J Mammal 87:1252–1260.  https://doi.org/10.1644/06-MAMM-A-033R1.1 Google Scholar
  34. Mosimann JE (1970) Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J Am Stat Assoc 65:930.  https://doi.org/10.2307/2284599 Google Scholar
  35. Nasif NL (1998) Nuevo material de Eumysopinae (Echimyidae, Rodentia) de la formación Andalhuala (Terciario Superior), Valle de Santa María, Província de Catamarca, Argentina. Ameghiniana 35:3–6Google Scholar
  36. Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308.  https://doi.org/10.1146/annurev.es.10.110179.001413 Google Scholar
  37. Nevo E (1995) Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol (Warsz) Suppl 3:9–31Google Scholar
  38. Nicola PA, Monteiro LR, Pessôa LM, von Zuben FJ, Rohlf FJ, dos Reis SF (2003) Congruence of hierarchical, localized variation in cranial shape and molecular phylogenetic structure in spiny rats, genus Trinomys (Rodentia: Echimyidae). Biol J Linn Soc 80:385–396.  https://doi.org/10.1046/j.1095-8312.2003.00245.x Google Scholar
  39. Parada A, D’Elía G, Palma RE (2015) The influence of ecological and geographical context in the radiation of Neotropical sigmodontine rodents. BMC Evol Biol 15:172.  https://doi.org/10.1186/s12862-015-0440-z Google Scholar
  40. Parada A, Pardiñas UFJ, Salazar-Bravo J, D’Elía G, Palma RE (2013) Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol Phylogenet Evol 66:960–968.  https://doi.org/10.1016/j.ympev.2012.12.001 Google Scholar
  41. Patton JL, Pardiñas UFJ, D’Elía G (eds) (2015) Mammals of South America. University of Chicago Press, ChicagoGoogle Scholar
  42. Pérez MJ, Barquez RM, Díaz MM (2017) Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, rodentia). Zookeys 2017:77–96.  https://doi.org/10.3897/zookeys.710.14033 Google Scholar
  43. Pessôa LM, Reis SF dos (2002) Proechimys albispinus. Mammal Species 693:1–3Google Scholar
  44. Pessôa LM, Tavares WC, Oliveira JA, Patton JL (2015) Genus Trinomys Thomas, 1921. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). University of Chicago Press, Chicago, pp 999–1019Google Scholar
  45. Rocha PLB (1991) Ecologia e morfologia de uma nova espécie de Proechimys (Rodentia: Echimyidae) das dunas interiores do Rio São Francisco, Bahia. Universidade de São PauloGoogle Scholar
  46. Rocha PLB, Renous S, Abourachid a., Höfling E (2007) Evolution toward asymmetrical gaits in Neotropical spiny rats (Rodentia: Echimyidae): evidences favoring adaptation. Can J Zool 85:709–717.  https://doi.org/10.1139/Z07-049 Google Scholar
  47. Rodríguez-Serrano E, Palma RE, Hernández CE (2008) The evolution of ecomorphological traits within the Abrothrichini (Rodentia: Sigmodontinae): a bayesian phylogenetics approach. Mol Phylogenet Evol 48:473–480.  https://doi.org/10.1016/j.ympev.2008.05.012 Google Scholar
  48. Rovereto T, Primitivo UN, Rodentia E, Del E (1995) Theridomysops parvulus (Rovereto, 1914), un primitivo Eumysopinae (Rodentia, Echimyidae) del Mioceno tardio de Argentina. Mastozool Neotrop 2:167–172Google Scholar
  49. Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411.  https://doi.org/10.1002/jmor.10662 Google Scholar
  50. Santos JWA, Lacey EA (2011) Burrow sharing in the desert-adapted torch-tail spiny rat, Trinomys yonenagae. J Mammal 92:3–11.  https://doi.org/10.1644/09-MAMM-S-389.1 Google Scholar
  51. Sokal RR, Rohlf FJ (1994) Biometry. W. H. Freeman, New YorkGoogle Scholar
  52. StatSoft I (2008) Statistica (data analysis software system)Google Scholar
  53. Steiner-Souza F, Freitas TRO de, Cordeiro-Estrela P (2010) Inferring adaptation within shape diversity of the humerus of subterranean rodent Ctenomys. Biol J Linn Soc 100:353–367.  https://doi.org/10.1111/j.1095-8312.2010.01400.x Google Scholar
  54. Tavares WC, Abi-Rezik P, Seuánez HN (2018a) Historical and ecological influence in the evolutionary diversification of external morphology of Neotropical spiny rats (Echimyidae, Rodentia). J Zool Syst Evol Res 56:453–465.  https://doi.org/10.1111/jzs.12215 Google Scholar
  55. Tavares WC, Pessôa LM (2010) Variação Morfológica em Populações de Trinomys (Thomas, 1921) de Restingas e Matas de Baixada no Estado do Rio de Janeiro. In: Pessôa LM, Tavares WC, Siciliano S (eds) Mamíferos de Restingas e Manguezais do Brasil. Sociedade Brasileira de Mastozoologia, Rio de Janeiro, pp 128–154Google Scholar
  56. Tavares WC, Pessôa LM, Seuánez HN (2016) Stability and acceleration of phenotypic evolution in spiny rats (Trinomys, Echimyidae) across different environments. Zool J Linn Soc 178:149–162.  https://doi.org/10.1111/zoj.12406 Google Scholar
  57. Tavares WC, Pessôa LM, Seuánez HN (2018b) Changes in ontogenetic allometry and their role in the emergence of cranial morphology in fossorial spiny rats (Echimyidae, Hystricomorpha, Rodentia). J Mammal Evol.  https://doi.org/10.1007/s10914-018-9433-1
  58. Teta P, Pardiñas UFJ (2015) Genus Blarinomys Thomas, 1896. In: Patton. JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 208–211Google Scholar
  59. Upham NS, Patterson BD (2012) Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Mol Phylogenet Evol 63:417–429.  https://doi.org/10.1016/j.ympev.2012.01.020 Google Scholar
  60. Vaughan TA, Ryan JM, Czaplewski NJ (2011) Mammalogy. Jones & Bartlett Learning, BurlingtonGoogle Scholar
  61. Verzi DH, Morgan CC, Olivares AI (2015) The history of South American octodontoid rodents and its contribution to evolutionary generalisations. In: Cox PG, Hautier L (eds) Evolution of the Rodents. Cambridge University Press, Cambridge, pp 139–163Google Scholar
  62. Verzi DH, Olivares AI, Hadler P, Castro JC, Tonni EP (2018) Occurrence of Dicolpomys (Echimyidae) in the late Holocene of Argentina: the most recently extinct South American caviomorph genus. Quaternary Internatl 123–131.  https://doi.org/10.1016/j.quaint.2018.04.041
  63. Verzi DH, Olivares AI, Morgan CC, Álvarez A (2016) Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae. J Mammal Evol 23:93–115.  https://doi.org/10.1007/s10914-015-9301-1 Google Scholar
  64. Webb SD (1977) A history of savanna vertebrates in the New World. Part I: North America. Annu Rev Ecol Syst 8:355–380.  https://doi.org/10.1146/annurev.es.08.110177.002035 Google Scholar
  65. Webb SD (1978) A history of savanna vertebrates in the New World. Part II: South America and the Great Interchange. Annu Rev Ecol Syst 9:393–426Google Scholar
  66. Wilson LAB, Geiger M (2015) Diversity and evolution of femoral variation in Ctenohystrica. In: Cox PG, Hautier L (eds) Evolution of the Rodents. Cambridge University Press, Cambridge, pp 510–538Google Scholar
  67. Woods CA (1972) Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Campus Duque de Caxias, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCSUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de Pós-Graduação em GenéticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Programa de GenéticaInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations