Advertisement

Journal of Mammalian Evolution

, Volume 26, Issue 4, pp 517–543 | Cite as

Generalized Osteosclerotic Condition in the Skeleton of Nanophoca vitulinoides, a Dwarf Seal from the Miocene of Belgium

  • Leonard DewaeleEmail author
  • Olivier Lambert
  • Michel Laurin
  • Tim De Kock
  • Stephen Louwye
  • Vivian de Buffrénil
Original Paper

Abstract

In the fossil record, it has been shown that various clades of secondarily aquatic tetrapods experienced an initial densification of their bones in the early stages of their evolution, and developed spongier and lighter bones only later in their evolution, with the acquisition of more efficient swimming modes. Although the inner bone structure of most secondarily aquatic tetrapods has already been studied, no research hitherto focused on true seals, or Phocidae. However, preliminary observations previously made on a Miocene species, Nanophoca vitulinoides, suggested that this taxon showed pronounced specialization of bone structure as compared to other seals. This feature justifies a specific comparative study, which is the purpose of this article. Microanatomical analysis of bones of N. vitulinoides shows compactness values nearing 100%, which is much higher than in other semi-aquatic mammals, pinnipeds included. Osteohistological analyses show virtually complete remodeling of the medullary territory by Haversian substitution. Extreme bone compactness locally resulted from an imbalance, towards reconstruction, of this process. Cortical regions were less intensely remodeled. In a number of specimens, the cortex shows clear growth marks as seasonal lines of arrested growth. The results suggest that, despite the extreme compactness of long bones of N. vitulinoides and the small size of this taxon, the growth rate of the cortex, and that of the bones in general, did not differ strongly from that of other, larger phocids. Extreme skeletal compaction and densification must have increased body density in Nanophoca. Consequently, speed, acceleration, and maneuverability must have been low, and this taxon was most likely a near-shore bottom-dwelling seal. Consequently, dietary preferences were most likely oriented towards benthic food sources.

Keywords

Neogene Phocidae Nanophoca vitulinoides Osteohistology Microanatomy Osteosclerosis 

Notes

Acknowledgements

The research presented in this study is in partial fulfillment of the PhD research of LD, conducted at Ghent University, Ghent, Belgium, and in collaboration with the Royal Belgian Institute of Natural Sciences, Brussels, Belgium. This PhD research is funded by the Research Foundation – Flanders (FWO) through an FWO PhD Fellowship to LD. This research is also partly funded by the Society of Vertebrate Paleontology’s 2016 Steven Cohen Award for Excellent Student Research, awarded to LD. TDK holds a postdoctoral Fellowship at the FWO.

We also want to thank S Bruaux, C Cousin, and A Folie from the RBINS for providing access to the collections. We thank R Fraaije and N Peters from the Oertijdmuseum Groene Poort, Boxtel, Netherlands, for allowing access to the holotypes of Batavipusa neerlandica and Praepusa boeska. We are grateful to M Bosselaers for donating specimens from his private collection for the elaboration of thin sections. Special thanks to JR Wible (editor-in-chief), RW Boessenecker (reviewer) and A Houssaye (reviewer) for helpful comments that improved the quality of this work.

Supplementary material

10914_2018_9438_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 31 kb)

References

  1. Amprino R (1947) La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Arch Biol 58:315–330Google Scholar
  2. Amson E, Muizon C de (2014) A new durophagous phocid (Mammalia: Carnivora) from the late Neogene of Peru and considerations on monachine seal phylogeny. J Syst Palaeontol 12:523–548. doi:  https://doi.org/10.1080/14772019.2013.799610 Google Scholar
  3. Amson E, Muizon C de, Laurin M, Argot C, Buffrénil V de (2014) Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc Biol Soc 281:20140192. doi:  https://doi.org/10.1098/rspb.2014.0192 PubMedGoogle Scholar
  4. Beentjes MP (1990) Comparative terrestrial locomotion of the Hooker's sea lion (Phocarctos hookeri) and the New Zealand fur seal (Arctocephalus forsteri): evolutionary and ecological implications. Zool J Linn Soc 98:307–325. doi:  https://doi.org/10.1111/j.1096-3642.1990.tb01204.x CrossRefGoogle Scholar
  5. Berta A, Kienle S, Bianucci G, Sorbi S (2015) A reevaluation of Pliphoca etrusca (Pinnipedia, Phocidae) from the Pliocene of Italy: phylogenetic and biogeographic implications. J Vertebr Paleontol 35:e88944. doi:  https://doi.org/10.1080/02724634.2014.889144 CrossRefGoogle Scholar
  6. Bininda-Emonds ORP, Russell AP (1996) A morphological perspective on the phylogenetic relationships of the extant phocid seals (Mammalia: Carnivora: Phocidae). Bonn Zool Monogr 41:1–256Google Scholar
  7. Boness DJ, Bowen WD (1996) The evolution of maternal care in pinnipeds. Bioscience 46:645–654Google Scholar
  8. Burr DB (1993) Remodeling and the repair of fatigue damage. Calcif Tissue Internatl 53 (suppl 1):S75–S81. doi:  https://doi.org/10.1007/BF01673407 CrossRefGoogle Scholar
  9. Burr DB, Allen MR (eds) (2014) Basic and Applied Bone Biology. Elsevier/Academic Press, LondonGoogle Scholar
  10. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200. doi: https://doi.org/10.1016/0021-9290(85)90204-0 CrossRefPubMedGoogle Scholar
  11. Buffrénil V de, Canoville A, D'Anastasio R, Domning DP (2010) Evolution of sirenian pachyosteosclerosis, a model-case for the study of bone structure in aquatic tetrapods. J Mammal Evol 17:101–120.doi:  https://doi.org/10.1007/s10914-010-9130-1 Google Scholar
  12. Buffrénil V de, Casinos A (1995) Observations histologiques sur le rostre de Mesoplodon densirostris (Mammalia, Cetacea, Ziphiidae): le tissu osseux le plus dense connu. Ann Sci Nat Zool 13ème Ser 16:21–32Google Scholar
  13. Buffrénil V de, Mazin J-M (1989) Bone histology of Claudiosaurus germaini (Reptilia, Claudiosauridae) and the problem of pachyostosis in aquatic tetrapods. Hist Biol 2:311–322. doi:  https://doi.org/10.1080/08912968909386509 Google Scholar
  14. Buffrénil V de, Rage J-C (1993) La ‘pachyostose’ vertébrale de Simoliophis (Reptilia, Squamata): données comparatives et considérations fonctionnelles. Ann Paleontol (Vertebr) 79:315–335Google Scholar
  15. Buffrénil V de, Ricqlès A de, Ray CE, Domning, DP (1990) Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea). J Vertebr Paleontol 10:455–466. doi:  https://doi.org/10.1080/02724634.1990.10011828 Google Scholar
  16. Buffrénil V de, Schoevaert D (1988) On how the bone of the delphinid humerus becomes cancellous: ontogeny of an histological specialisation. Journal of Morphology 198:149–164PubMedGoogle Scholar
  17. Buffrénil V de, Schoevaert D (1989) Données quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Müller) (Sirenia, Dugongidae). Can J Zool 67:2107–2119. doi:  https://doi.org/10.1139/z89-300 Google Scholar
  18. Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linn Soc 100:384–406. doi:  https://doi.org/10.1111/j.1095-8312.2010.01431.x CrossRefGoogle Scholar
  19. Canoville A, Buffrénil V de, Laurin M (2016) Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biol J Linn Soc 118:706–733. doi:  https://doi.org/10.1111/bij.12779 CrossRefGoogle Scholar
  20. Castanet J (2006) Time recording in bone microstructures of endothermic animals; functional relationships. CR Palevol 5:629–636. doi:  https://doi.org/10.1016/j.crpv.2005.10.006 CrossRefGoogle Scholar
  21. Castanet J, Curry Rogers C, Cubo J, Boisard J (2000) Periosteal bone growth rates in extant ratites (ostrich and emu). Implications for assessing growth in dinosaurs. CR Acad Sci Paris, Sci Vie 323:543–550. doi:  https://doi.org/10.1016/S0764-4469(00)00181-5 Google Scholar
  22. Castanet J, Grandin A, Abourachid A, Ricqlès A de (1996) Expression de la dynamique de croissance dans la structure de l’os périostique chez Anas platyrhynchos. CR Acad Sci Paris, Sci Vie 319:301–308Google Scholar
  23. Charles JF, Aliprantis AO (2014) Osteoclasts: more than ‘bone eaters’. Trends Mol Med 20:449–459. doi:  https://doi.org/10.1016/j.molmed.2014.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cozzuol MA (2001) A “northern” seal from the Miocene of Argentina: implications for phocid phylogeny and biogeography. J Vertebr Paleontol 21:415–421. doi: https://doi.org/10.1671/0272-4634(2001)021[0415:ANSFTM]2.0.CO;2Google Scholar
  25. Danova NA, Colopy SA, Radtke CL, Kalscheur VL, Markel MD, Vanderby R Jr, McCabe RP, Escarcega AJ, Muir P (2003) Degradation of bone structural properties by accumulation and coalescence of microcracks. Bone 33:197–205. doi:  https://doi.org/10.1016/S8756-3282(03)00155-8 CrossRefPubMedGoogle Scholar
  26. Dehn L-A, Sheffield GG, Follmann EH, Duffy LK, Thomas DL, O’Hara TM (2006) Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol 30:167–181. doi:  https://doi.org/10.1007/s00300-006-0171-0 CrossRefGoogle Scholar
  27. Deméré TA (1994a) Two new species of fossil walruses (Pinnipedia: Odobenidae) from the upper Pliocene San Diego Formation. Proc San Diego Soc Nat Hist 29:77–98Google Scholar
  28. Deméré TA (1994b) The family Odobenidae: a phylogenetic analysis of fossil and living taxa. Proc San Diego Soc Nat Hist 29:99–123Google Scholar
  29. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:1–16. doi:  https://doi.org/10.1002/jbmr.1805 Google Scholar
  30. Dewaele L, Amson E, Lambert O, Louwye S (2017a) Reappraisal of the extinct seal “Phocavitulinoides from the Neogene of the North Sea basin, with bearing on its geological age, phylogenetic affinities, and locomotion. PeerJ 5:e3316. doi:  https://doi.org/10.7717/peerj.3316 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dewaele L, Lambert O, Louwye S (2017b) On Prophoca and Leptophoca (Pinnipedia, Phocidae) from the Miocene of the North Atlantic realm: redescription, phylogenetic affinities and paleobiogeographic implications. PeerJ 5:e3024. doi:  https://doi.org/10.7717/peerj.3024 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Domning D, Buffrénil V de (1991) Hydrostasis in the Sirenia: quantitative data and functional interpretation. Mar Mammal Sci 7:331–368. doi:  https://doi.org/10.1111/j.1748-7692.1991.tb00111.x CrossRefGoogle Scholar
  33. Dumont M, Buffrénil V de, Mijan I, Lambert O (2016) Structure and growth pattern of the bizarre hemispheric prominence of the rostrum of the fossil beaked whale Globicetus huberus (Mammalia, Cetacea, Ziphiidae). J Morphol 277:1292–1308. doi:  https://doi.org/10.1002/jmor.20575 PubMedGoogle Scholar
  34. Dumont M, Laurin M, Jacques F, Pellé E, Dabin W, Buffrénil V de (2013) Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study. J Morphol 274:570–584. doi:  https://doi.org/10.1002/jmor.20122 CrossRefPubMedGoogle Scholar
  35. Evans RA, Hughes WG, Dunstan CR, Lennon WP, Kohan L, Hills E, Wong SYP(1983) Adult osteosclerosis. Metab Bone Dis Relat 5:111–117. doi:  https://doi.org/10.1016/0221-8747(83)90011-5 CrossRefGoogle Scholar
  36. Fawcett DW, Jensh RP (1997) Bloom and Fawcett: Concise Histology. Chapman and Hall, New YorkGoogle Scholar
  37. Fay FH (1982) Ecology and biology of the Pacific walrus, Odobenus rosmarus divergens Illiger. N Am Fauna 74:1–279. doi:  https://doi.org/10.3996/nafa.74.0001 CrossRefGoogle Scholar
  38. Fiala P (1980) Structure of the long limb bones and its significance in determining age in man. Folia Morphol 28:259–263Google Scholar
  39. Fish FE, Hurley J, Costa DP (2003) Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design. J Exp Biol 206:667–674. doi:  https://doi.org/10.1242/jeb.00144 PubMedGoogle Scholar
  40. Fish FE, Stein BR (1991) Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology 110:339–345. doi:  https://doi.org/10.1007/BF01668024 CrossRefGoogle Scholar
  41. Francillon-Vieillot H, Buffrénil V de, Castanet J, Geraudie J, Meunier JF, Sire JY, Zylberberg L, Ricqlès A de (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal Biomineralizations: Patterns, Processes and Evolutionary Trends, Vol. 1. Van Nostrand Reinhold, New York, pp 471–530.Google Scholar
  42. Frost HM (1969) Tetracycline-based histological analysis of bone remodeling. Calc Tiss Res 33:211–237. doi:  https://doi.org/10.1007/BF02058664 CrossRefGoogle Scholar
  43. Fulton TL, Strobeck C (2010) Multiple markers and multiple individuals refine true seal phylogeny and bring molecules and morphology back in line. Proc Roy Soc B–Biol Sci 277:1065–1070. doi:  https://doi.org/10.1098/rspb.2009.1783 CrossRefGoogle Scholar
  44. Germain D, Laurin M (2005) Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zool Scr 34:335–350. doi:  https://doi.org/10.1111/j.1463-6409.2005.00198.x CrossRefGoogle Scholar
  45. Giles S, Rücklin M, Donoghue PCJ (2013) Histology of “placoderm” dermal skeletons: implications for the nature of the ancestral gnathostomes. J Morphol 274:627–644. doi:  https://doi.org/10.1002/jmor.20119 PubMedPubMedCentralGoogle Scholar
  46. Girondot M, Laurin M (2003) Bone Profiler: a tool to quantify, model and statistically compare bone section compactness profiles. J Vertebr Paleontol 23:458–461. doi: https://doi.org/10.1671/0272-4634(2003)023[0458:BPATTQ]2.0.CO;2Google Scholar
  47. Gjertz I, Wiig Ø (1992) Feeding of walrus Odobenus rosmarus in Svalbard. Polar Record 28:57–59. doi:  https://doi.org/10.1017/S0032247400020283 CrossRefGoogle Scholar
  48. Godfrey SJ (1985) Additional observations of subaqueous locomotion in the California Sea Lion (Zalophus californianus). Aquat Mammal 11:53–57Google Scholar
  49. Higdon JW, Bininda-Emonds ORP, Beck RMD, Ferguson SH (2007) Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC Evol Biol 7 :216. doi:  https://doi.org/10.1186/1471-2148-7-216 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Houssaye A (2009) “Pachyostosis” in aquatic amniotes: a review. Integr Zool 4:325–340. doi:  https://doi.org/10.1111/j.1749-4877.2009.00146.x CrossRefPubMedGoogle Scholar
  51. Houssaye A (2013) Palaeoecological and morphofunctional interpretation of bone mass increase: an example in late Cretaceous shallow marine squamates. Biol Rev 88:117–139.PubMedGoogle Scholar
  52. Houssaye A, Fish FE (2016) Functional (secondary) adaptation to an aquatic life in vertebrates: an introduction to the symposium. Integr Comp Biol 56:1266–1270. doi:  https://doi.org/10.1093/icb.icw129 CrossRefPubMedGoogle Scholar
  53. Houssaye A, Lindgren J, Pellegrini R, Lee AH, Germain D, Polcyn MJ (2013) Microanatomical and histological features in the long bones of mosasaurine mosasaurs (Reptilia, Squamata)–implications for aquatic adaptation and growth rates. PLoS One 8:e76741. doi:  https://doi.org/10.1371/journal.pone.0076741 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Houssaye A, Sander PM, Klein N (2016) Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr Comp Biol 56:1349–1369. doi:  https://doi.org/10.1093/icb/icw120 PubMedGoogle Scholar
  55. Houssaye A, Tafforeau P, Muizon C de, Gingerich PD (2015) Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS One 10:e0118409. doi:  https://doi.org/10.1371/journal.pone.0118409 PubMedPubMedCentralGoogle Scholar
  56. Jaworski ZFG (1992) Haversian system and Haversian bone. In: Hall BK (ed) Bone Metabolism and Mineralization. CRC Press, Boca Raton, pp 21–45Google Scholar
  57. Kaiser HE (1967) Pachyostotic bone conditions in certain regions of skull of Odobenus rosmarus L. in relation to weight distribution. Anatomical Record 157, 366Google Scholar
  58. Kaiser HE (1974) Morphology of the Sirenians. A Macroscopic X-Ray Atlas of the Morphology of Recent Species. S. Karger, BaselGoogle Scholar
  59. Köhler M, Marin-Moratalla N, Jordana X, Aanes R (2012) Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487:358–361. doi:  https://doi.org/10.1038/nature11264 CrossRefPubMedGoogle Scholar
  60. Koretsky IA (2001) Morphology and systematics of the Miocene Phocinae (Mammalia: Carnivora) from Paratethys and the North Atlantic Region. Geol Hung Ser Palaeontol 54:1–109Google Scholar
  61. Koretsky IA, Peters N (2008) Batavipusa (Carnivora, Phocidae, Phocinae): a new genus from the eastern shore of the North Atlantic Ocean (Miocene seals of the Netherlands, part II). Deinsea 12:53–62Google Scholar
  62. Koretsky IA, Peters N, Rahmat SJ (2015) New species of Praepusa (Carnivora, Phocidae, Phocinae) from the Netherlands supports east to west Neogene dispersal of true seals. Vestn Zool 49:57–66Google Scholar
  63. Koretsky IA, Rahmat SJ (2013) First record of fossil Cystophorinae (Carnivora, Phocidae): middle Miocene seals from the northern Paratethys. Riv Ital Paleontol S 119:325–350. doi:  https://doi.org/10.13130/2039-4942/6043 CrossRefGoogle Scholar
  64. Koretsky IA, Rahmat SJ (2017) Preliminary report of pachyosteosclerotic bones in seals. Open Acc Res Anat 1:1–3Google Scholar
  65. Koretsky IA, Ray CE (2008) Phocidae of the Pliocene of Eastern North America. Virginia Mus Nat Hist Spec Pub 14:81–140Google Scholar
  66. Kühn C, Frey E (2012) Walking like caterpillars, flying like bats––pinniped locomotion. Palaeobio Palaeoenv 92:197–210. doi:  https://doi.org/10.1007/s12549-012-0077-5 CrossRefGoogle Scholar
  67. Lafage-Proust M-H, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, Vico L (2015) Assessment of bone vascularization and its role in bone remodeling. BoneKEy Rep 4, art no 662:1–8. doi:  https://doi.org/10.1038/bonekey.2015.29
  68. Lambert O, Muizon C de, Buffrénil V de (2011) Hyperdense rostral bones of ziphiid whales: diverse processes for a similar pattern. CR Palevol 10:453–468. doi:  https://doi.org/10.1016/j.crpv.2011.03.012 Google Scholar
  69. Lamm ET (2013) Preparation and sectioning of specimens. In: Padian K, Lamm ET (eds) Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation. University of California Press, Berkeley, pp 55–160Google Scholar
  70. Landrigan MD, Li J, Turnbull TL, Burr DB, Niebur GL, Roeder RK (2011) Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone. Bone 48:443–450. doi:  https://doi.org/10.1016/j.bone.2010.10.160 CrossRefPubMedGoogle Scholar
  71. Laurin M, Canoville A, Germain D (2011) Bone microanatomy and lifestyle: a descriptive approach. CR Palevol 10:381–402. doi:  https://doi.org/10.1016/j.crpv.2011.02.003 Google Scholar
  72. Laurin M, Girondot M, Loth M-M (2004) The evolution of long bone microanatomy and lifestyle in lissamphibians. Paleobiology 30:589–613. doi:  https://doi.org/10.1666/0094-8373(2004)030<0589:TEOLBM>2.0.CO;2 CrossRefGoogle Scholar
  73. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ, Giehl M, Gowin W (2003) Detecting microdamage in bone. J Anat 203:161–172. doi:  https://doi.org/10.1046/j.1469-7580.2003.00211.x CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lieberman DE, Pearson OM, Polk JD, Demes B, Crompton AW (2003) Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J Exp Biol 206:3125–3138. doi:  https://doi.org/10.1242/jeb.00514 CrossRefPubMedGoogle Scholar
  75. Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE (2009) Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 42:249–256. doi:  https://doi.org/10.1016/j.biomech.2008.10.035 CrossRefPubMedGoogle Scholar
  76. Margerie E de, Cubo J, Castanet J (2002) Bone typology and growth rate: testing and quantifying “Amprino’s rule” in the mallard (Anas platyrhynchos). CR Biol 325:221–230. doi:  https://doi.org/10.1016/S1631-0691(02)01429-4 CrossRefGoogle Scholar
  77. Marks SC, Popoff SN (1988) Bone cell biology: the regulation of development, structure and function of the skeleton. Am J Anat 183:1–44. doi:  https://doi.org/10.1002/aja.1001830102 CrossRefPubMedGoogle Scholar
  78. Martin RB (2000) Toward a unifying theory of bone remodeling. Bone 26:1–6. doi:  https://doi.org/10.1016/S8756-3282(99)00241-0 CrossRefPubMedGoogle Scholar
  79. Masschaele B, Dierick M, Loo DV, Boone MN, Brabant L, Pauwels E, Cnudde V, Hoorebeke LV (2013) HECTOR: a 240kV micro-CT setup optimized for research. J Phys Conf Ser 463:012012. doi:  https://doi.org/10.1088/1742-6596/463/1/012012 Google Scholar
  80. Michou L, Brown JP (2011) Genetics of bone diseases: Paget’s disease, fibrous dysplasia, osteopetrosis and osteogenesis imperfecta. Joint Bone Spine 78: 252–258. doi:  https://doi.org/10.1016/j.bspin.2010.07.010 CrossRefPubMedGoogle Scholar
  81. Mohsin S, O’Brien FJ, Lee TC (2006) Osteonal crack barriers in ovine compact bone. J Anat 208: 81–89PubMedPubMedCentralGoogle Scholar
  82. Muizon C de (1981) Les vertébrés fossiles de la Formation Pisco (Pérou). Première partie: deux nouveaux Monachinae du Pliocène de Sud Sacaco. Inst Franc Etud Andines Mem 6 20–161Google Scholar
  83. Nakajima Y, Endo H (2013). Comparative humeral microanatomy of terrestrial, semiaquatic, and aquatic carnivorans using micro-focus CT scan. Mammal Study 38:1–8Google Scholar
  84. Parfitt AM (1981) Bone effect of spaceflight: analysis by quantum concept of bone remodeling. Acta Astronaut 8:1083–1090. doi:  https://doi.org/10.1016/0094-5765(81)90082-5 CrossRefPubMedGoogle Scholar
  85. Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat 4:1–6. doi:  https://doi.org/10.1016/022-8747(82)90002-9 CrossRefGoogle Scholar
  86. Pierce SE, Clack JA, Hutchinson JR (2011) Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. J Anat 219:502–514. doi:  https://doi.org/10.1111/j.1469-7580.2011.01406.x CrossRefPubMedPubMedCentralGoogle Scholar
  87. Polig E, Jee WSS (1990) A model of osteon closure in cortical bone. Calcif Tissue Internatl 47:261–269. doi:  https://doi.org/10.1007/BF02555907 CrossRefGoogle Scholar
  88. Prondvai E, Stein KHW, Ricqlès A de, Cubo J (2014) Development-based revision of bone tissue classification: the importance of semantics for science. Biol J Linn Soc 112:799–816. doi:  https://doi.org/10.1111/bio.12323 CrossRefGoogle Scholar
  89. Pyenson ND, Kelley NP, Parham JF (2014) Marine tetrapod macroevolution: physical and biological drivers on 250 Ma of invasions and evolution in ocean ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 400:1–8. doi: https://doi.org/10.1016/j.palaeo.2014.02.18
  90. Qiu S, Fyhrie DP, Palnitkar S, Sudhaker Rao D (2003) Histomorphometric assessment of Haversian canal and osteocyte lacunae in different-sized osteons in human ribs. Anat Rec 272A:520–525. doi:  https://doi.org/10.1002/ar.a.10058 CrossRefGoogle Scholar
  91. Quemeneur S, Buffrénil V de, Laurin M (2013) Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol J Linn Soc 109:644–655. doi:  https://doi.org/10.1111/bij.12066 CrossRefGoogle Scholar
  92. Ralston SH (2008) Pathogenesis of Paget’s disease of bone. Bone 43: 819–825.doi:  https://doi.org/10.1016/j.bone.2008.06.015 PubMedGoogle Scholar
  93. Ricqlès A de (1989). Les mécanismes hétérochroniques dans le retour des tétrapodes au milieu aquatique. Geobios Mem Spec 12:337–348. doi:  https://doi.org/10.1016/S0016-6995(89)80034-8 CrossRefGoogle Scholar
  94. Ricqlès A de, Buffrénil V de (1995) Sur la présence de pachyostéosclérose chez la rhytine de Steller [Rhytina (Hydrodamalis) gigas], sirénien récent éteint. Ann Sci Nat Zool Paris, 13e Ser 16:47–53Google Scholar
  95. Ricqlès A de, Buffrénil V de (2001) Bone histology, heterochronies and the return of tetrapods to life in water: w[h]ere are we? In: Mazin J-M, Buffrénil V de (Eds) Secondary Adaptation of Tetrapods to Life in Water. Verlag Dr. Friedrich Pfeil, München, pp 289–310Google Scholar
  96. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–527. doi:  https://doi.org/10.1016/8756-3282(95)00370-3 CrossRefPubMedGoogle Scholar
  97. Stein BR (1989) Bone density and adaptation in semiaquatic mammals. J Mammal 70:467–476. doi:  https://doi.org/10.2307/1381418 CrossRefGoogle Scholar
  98. Storå J (2000) Skeletal development in the Grey seal Halichoerus grypus, the Ringed seal Phoca hispida botnica, the Harbour seal Phoca vitulina vitulina and the Harp seal Phoca groenlandica. Epiphyseal fusion and life History. Archaeozoologia 11:199–222.Google Scholar
  99. Taylor MA (2009) Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31. doi:  https://doi.org/10.1080/10292380009380550 CrossRefGoogle Scholar
  100. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407. doi:  https://doi.org/10.1016/S8756-3282(98)00118-5 CrossRefPubMedGoogle Scholar
  101. Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290:514–522. doi: https://doi.org/10.1002/ar.20545 CrossRefGoogle Scholar
  102. Van Beneden P-J (1871) Les phoques de la mer scaldisienne. Bul Acad R Sci Let b-Arts Belg 2ième Ser 32:5–19Google Scholar
  103. Van Beneden P-J (1877) Description des ossements fossiles des environs d’Anvers, première partie. Pinnipèdes ou amphithériens. Ann Mus R Hist Nat Belg 1:1–88Google Scholar
  104. Voide R, Schneider P, Stauber M, van Lenthe GH, Stampanoni M, Müller R (2011) The importance of murine cortical bone microstructure for microcrack initiation and propagation. Bone 49:1186–1193. doi:  https://doi.org/10.1016/j.bone.2011.08.011 CrossRefPubMedGoogle Scholar
  105. Wall WP (1983) The correlation between high limb-bone density and aquatic habits in recent mammals. J Paleontol 57:197–207Google Scholar
  106. Webb P, Buffrénil V de (1990) Locomotion in the biology of large aquatic vertebrates. Trans Am Fish Soc 119:629–641. doi:  https://doi.org/10.1577/1548-8659(1990)119<0629:LITBOL>2.3.CO;2 CrossRefGoogle Scholar
  107. Zylberberg L, Traub W, Buffrénil V de, Alizard F, Arad T, Weiner S (1998) Rostrum of a toothed whale: ultrastructural study of a very dense bone. Bone 23:241–247. doi:  https://doi.org/10.1016/S8756-3282(98)00101-X CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vakgroep GeologieUniversiteit GentGhentBelgium
  2. 2.Directorate “Earth and History of Life”Institut Royal des Sciences Naturelles de BelgiqueBrusselsBelgium
  3. 3.Département Origines et EvolutionMuséum National d’Histoire NaturelleParisFrance
  4. 4.PProGRess, Vakgroep GeologieUniversiteit GentGhentBelgium

Personalised recommendations