Advertisement

Brain and Behavior of Dromiciops gliroides

  • Yamila Gurovich
  • Kenneth W. S. AshwellEmail author
Original Paper
  • 41 Downloads

Abstract

We have analyzed the internal structure of the brain of the microbiotherian marsupial Dromiciops gliroides and compared it with the brains of American and Australian marsupials. Dromiciops does not have a fasciculus aberrans, but does exhibit other features of brain structure that are similar to diprotodontid metatherians (e.g., lamination of the lateral geniculate nucleus of the dorsal thalamus). Cortical organization in Dromiciops shows some similarities with that in Australian marsupial carnivores in that the proportional areas of isocortex devoted to somatosensory and visual function are similar in size to each other, and greater in area than that devoted to olfactory or auditory function. This points to similar sensory requirements for the foraging lifestyle of Dromiciops and small Australian marsupial carnivores, with isocortical specialization for somatosensation and vision. We also examined phylogenetic relationships of Dromiciops with extant marsupials based on maximum parsimony analysis using a soft body brain morphology-only matrix, representing 93 extant marsupial taxa. The results recovered Dromiciops as a sister group to the Australasian marsupial clade Diprotodontia.

Keywords

Diprotodontia Lateral geniculate nucleus Inferior olivary nucleus Trigeminal nerve 

Abbreviations

2Cb

lobule 2 of cerebellar vermis

2n

optic nerve

3n

oculomotor nerve

3V

third ventricle

4Cb

lobule 4 of cerebellar vermis

4N

trochlear nucleus

4V

fourth ventricle

5Cb

lobule 5 of cerebellar vermis

5n

trigeminal nerve

5N

motor trigeminal nucleus

7Cb

lobule 7 of cerebellar vermis

7n

facial nerve

8Cb

lobule 8 of cerebellar vermis

8cn

cochlear division of vestibulocochlear nerve

9Cb

lobule 9 of cerebellar vermis

10Cb

lobule 10 of cerebellar vermis

10 N

vagal motor nucleus

12 N

hypoglossal nucleus

α

α sulcus

ac

anterior commissure

aca

anterior commissure, anterior limb

AcbC

nucleus accumbens core

AcbSh

nucleus accumbens shell

aci

anterior commissure, intrabulbar part

ACo

amygdalocortical area

AD

anterodorsal thalamic nucleus

AHA

anterior hypothalamic area

AHi

amygdalohippocampal area

AID

agranular insular cortex, dorsal

AIP

agranular insular cortex, posterior

AIV

agranular insular cortex, ventral

AM

anteromedial thalamic nucleus

Ant

anterior lobe of cerebellum

AOB

accessory olfactory bulb

AOD

anterior olfactory nucleus, dorsal part

AOE

anterior olfactory nucleus, external part

AOL

anterior olfactory nucleus, lateral part

AOV

anterior olfactory nucleus, ventral part

AP

area postrema

APT

anterior pretectal nucleus

APTD

anterior pretectal nucleus, dorsal part

APTV

anterior pretectal nucleus, ventral part

Aq

cerebral aqueduct

Arc

arcuate nucleus

ArcLP

arcuate hypothalamic nucleus, lateral posterior part

ArcMP

arcuate hypothalamic nucleus, medial posterior part

ASt

amygdalostriatal area

Au

auditory cortex

AV

anteroventral thalamic nucleus

bic

brachium of inferior colliculus

BIC

nucleus of brachium of inferior colliculus

BLA

basolateral nucleus of amygdala, anterior part

BMA

basomedial nucleus of amygdala, anterior part

BMP

basomedial nucleus of amygdala, posterior part

bsc

brachium of superior colliculus

CA

cornu Ammonis

CA1

cornu Ammonis, zone 1

CA2

cornu Ammonis, zone 2

CA3

cornu Ammonis, zone 3

Cb

cerebellum

Cd

caudate nucleus

Ce

central nucleus of amygdala

cef

cervical flexure

Cg

cingulate gyrus

Cg1

cingulate area 1

Cg2

cingulate area 2

CIC

central nucleus of inferior colliculus

Cl

claustrum

CL

central lateral thalamic nucleus

CM

central medial thalamic nucleus

CnF

cuneiform nucleus

Com

commissural nucleus of inferior colliculus

cp

cerebral peduncle

Cu

cuneate nucleus

Cx

cortex (region unspecified)

CxA

cortex amygdala

DA

dorsal hypothalamic area

das

dorsal acoustic stria

dc

dorsal columns

DC

dorsal cochlear nucleus

DCDp

dorsal cochlear nucleus, deep layer

DCFu

dorsal cochlear nucleus, fusiform layer

DCGr

dorsal cochlear nucleus, granular layer

DCIC

dorsal cortex of inferior colliculus

DCMo

dorsal cochlear nucleus, molecular layer

DEn

dorsal endopiriform cortex

DG

dentate gyrus of hippocampal formation

DLGa

dorsal lateral geniculate thalamic nucleus, alpha segment

DLGb

dorsal lateral geniculate thalamic nucleus, beta segment

DLL

dorsal nucleus of lateral lemniscus

dlo

dorsolateral olfactory tract

DMTg

dorsomedial tegmental nucleus

DpG

deep gray layer of superior colliculus

DR

dorsal raphe nucleus

DRL

dorsal raphe nucleus, lateral part

DS

dorsal subiculum

DT

dorsal terminal nucleus

EAC

extended amygdala, caudal part

ec

external capsule

ECIC

external cortex of inferior colliculus

Ect

ectorhinal cortex

ECu

external cuneate nucleus

eml

external medullary lamina

Ent

entorhinal cortex

EP

entopeduncular nucleus

EPl

external plexiform layer, main olfactory bulb

f

fornix

fi

fimbria of hippocampal formation

Fl

flocculus of cerebellum

fr

fasciculus retroflexus

FrA

frontal association cortex

GCCM

granule cell cluster magna

GI

glomerular layer of main olfactory bulb

GP

globus pallidus

Gr

nucleus gracilis

GrO

granule cell layer of main olfactory bulb

HDB

nucleus of horizontal limb of diagonal band

Hy

hypothalamus

ic

internal capsule

icp

inferior cerebellar peduncle

IG

indusium griseum

ILL

intermediate nucleus of lateral lemniscus

IMD

intermediodorsal thalamic nucleus

iml

internal medullary lamina

InG

intermediate gray layer of superior colliculus

Int

interposed cerebellar nucleus

IOA

inferior olive, subnucleus A of ventral accessory nucleus

IOA’

inferior olive, subnucleus A’ of ventral accessory nucleus

IOB

inferior olive, subnucleus B of ventral accessory nucleus

IOBe

inferior olive, beta subnucleus of ventral accessory nucleus

IOC

inferior olive, subnucleus C of ventral accessory nucleus

IOC’

inferior olive, subnucleus C′ of ventral accessory nucleus

IOD

inferior olive, dorsal accessory nucleus

IODl

inferior olive, dorsal accessory nucleus, lateral part

IODm

inferior olive, dorsal accessory nucleus, medial part

IOK

inferior olive, cap of Kooy of ventral accessory nucleus

IOmd

inferior olive, mediodorsal part of ventral accessory nucleus

IOPr(dl)

inferior olive, principal nucleus, dorsal lamina

IOPr(vl)

inferior olive, principal nucleus, ventral lamina

IP

interpeduncular nucleus

IPAC

interstitial nucleus of posterior limb of anterior commissure

IPl

internal plexiform layer of the olfactory bulb

isRt

isthmic reticular formation

LA

lateral anterior hypothalamic nucleus

LACbSh

lateral accumbens shell

Lat

lateral deep cerebellar nucleus

LD

laterodorsal thalamic nucleus

LEnt

lateral entorhinal cortex

LHb

lateral habenular nucleus

ll

lateral lemniscus

LM

lateral mammillary nucleus

lo

lateral olfactory tract

LO

lateral orbital cortex

LP

lateral posterior thalamic nucleus

LPB

lateral parabrachial nucleus

LPGi

lateral paragigantocellular nucleus

LPO

lateral preoptic nucleus

LRt

lateral reticular nucleus

LS

lateral septal nucleus

LSD

lateral septal nucleus, dorsal part

LSI

lateral septal nucleus, intermediate part

LSO

lateral superior olivary nucleus

LSV

lateral septal nucleus, ventral part

LV

lateral ventricle

LVe

lateral vestibular nucleus

LVPO

lateroventral preoptic nucleus

M

motor cortex

mcp

middle cerebellar peduncle

MCPC

magnocellular nucleus of posterior commissure

MCPO

magnocellular nucleus of preoptic area

Md

medulla oblongata

MD

mediodorsal thalamic nucleus

MDC

mediodorsal thalamic nucleus, central part

MDL

mediodorsal thalamic nucleus, lateral part

MDM

mediodorsal thalamic nucleus, medial part

Med

medial deep cerebellar nucleus

MEnt

medial entorhinal cortex

mfb

medial forebrain bundle

MGD

medial geniculate nucleus of thalamus, dorsal part

MGM

medial geniculate nucleus of thalamus, medial part

MGV

medial geniculate nucleus of thalamus, ventral part

MHb

medial habenular nucleus

Mi

mitral cell layer of main olfactory bulb

ml

medial lemniscus

ML

medial mammillary nucleus, lateral part

mlf

medial longitudinal fasciculus

MM

medial mammillary nucleus, medial part

MnR

median raphe nucleus

MO

medial orbital cortex

MOB

main olfactory bulb

MPA

medial preoptic area

MPB

medial parabrachial nucleus

MPT

medial pretectal nucleus

mRt

mesencephalic reticular formation

MS

medial septal nucleus

MSO

medial superior olive

mt

mamillothalamic tract

MVe

medial vestibular nucleus

MVeMC

medial vestibular nucleus, magnocellular part

MVePC

medial vestibular nucleus, parvicellular part

MVPO

medioventral periolivary nucleus

ns

nigrostriatal tract

OB

olfactory bulb

och

optic chiasm

on

olfactory nerve fibers

ON

olfactory nerve fibre layer of bulb

opt

optic tract

p1Rt

reticular formation of prosomere 1

Pa

paraventricular nucleus of hypothalamus

PAG

periaqueductal gray

PaS

parasubiculum

PBP

parabrachial pigmented nucleus

pc

posterior commissure

PC

paracentral nucleus of thalamus

PCRt

parvicellular nucleus of reticular formation

PF

parafascicular nucleus

PFlD

paraflocculus dorsal

PFlV

paraflocculus ventral

Pir

piriform cortex

PLCo

posterolateral cortical amygdala

PLH

posterolateral hypothalamus

PMnR

paramedian raphe nucleus

Pn

pontine nuclei

PnC

pontine reticular nucleus, caudal part

PnO

pontine reticular nucleus, oral part

PnV

pontine reticular nucleus, ventral part

Po

posterior thalamic nucleus

PPit

posterior pituitary

Pr5

principal sensory trigeminal nucleus

PrCnF

precuneiform nucleus

PrG

pregeniculate nucleus of prethalamus

PRh

perirhinal nucleus

PrL

prelimbic cortex

PrS

presubiculum

PT

paratenial nucleus

Pu

putamen

PV

paraventricular thalamic nucleus

PVA

paraventricular thalamic nucleus, anterior

PVP

paraventricular thalamic nucleus, posterior

py

pyramidal tract

Re

reuniens nucleus of thalamus

rf

rhinal fissure

RMC

red nucleus, magnocellular part

RMg

raphe magnus nucleus

ROb

raphe obscurus nucleus

RPC

red nucleus, parvicellular part

RSD

retrosplenial dysgranular cortex

RSGa

retrosplenial gyrus, part a

RSGb

retrosplenial gyrus, part b

Rt

reticular nucleus

RtSt

reticulostriatal nucleus

RtTg

reticulotegmental nucleus

S

subiculum

S1

primary somatosensory cortex

S2

secondary somatosensory cortex

s5

sensory trigeminal nerve root

SCh

suprachiasmatic nucleus of hypothalamus

scp

superior cerebellar peduncle

scpd

superior cerebellar penduncle decussation

SFi

septofimbrial nucleus

SHi

septohippocampal nucleus

SIB

substantia innominata, B cell groups

Sim

simplex lobule of cerebellum

sm

stria medullaris thalami

SNCD

substantia nigra, compact part, dorsal tier

SNL

substantia nigra, lateral part

SO

supraoptic nucleus of hypothalamus

Sol

nucleus of solitary tract

sp5

spinal trigeminal tract

Sp5I

spinal trigeminal nucleus, interpolar part

Sp5O

spinal trigeminal nucleus, oral part

SpC

spinal cord

SPO

superior paraolivary nucleus

SpVe

spinal vestibular nucleus

st

stria terminalis

STh

subthalamic nucleus

STLP

bed nucleus of stria terminalis, lateral division, posterior part

STLV

bed nucleus of stria terminalis, lateral division, ventral part

STMD

bed nucleus of stria terminalis, medial division, dorsal part

SubCD

subcoeruleus nucleus, dorsal part

SubG

subgeniculate nucleus of prethalamus

SuG

superficial gray of superior colliculus

TeA

temporal association cortex

tfp

transverse fibers of pons

TS

triangular septal nucleus

Tu

olfactory tubercle

tz

trapezoid body

Tz

trapezoid nucleus

V1

primary visual cortex

V2L

secondary visual area, lateral part

V2M

secondary visual area, medial part

VA

ventral anterior thalamic nucleus

VC

ventral cochlear nucleus

VEn

ventral endopiriform nucleus

vhc

ventral hippocampal commissure

VL

ventral lateral thalamic nucleus

VLH

ventral lateral hypothalamic nucleus

VLL

ventral nucleus of lateral lemniscus

VM

ventromedial thalamic nucleus

VMH

ventromedial hypothalamic nucleus

VMPO

ventromedial preoptic nucleus

VO

ventral orbital cortex

VP

ventral pallidum

VPL

ventral posterolateral thalamic nucleus

VPM

ventral posteromedial thalamic nucleus

VPPC

ventral posterior nucleus of thalamus, parvicellular part

VRe

ventral reuniens nucleus

VS

ventral subiculum

vsc

venstral spinocerebellar tract

VTA

ventral tegmental area

VTAR

ventral tegmental area, rostral part

VTg

ventral tegmental nucleus

ZI

zona incerta

Zo

stratum zonale of superior colliculus

Notes

Acknowledgements

We are extremely grateful to Emeritus Professor John Nelson of Monash University and Dr. Leo Joseph of Commonwealth Scientific and Industrial Research Organization (CSIRO), who kindly gave permission to photograph and analyze the sectioned and stained marsupial brains from the Nelson Brain Collection at the Australian National Wildlife Collection in Canberra. The study would also not have been possible without the excellent online resources of neurosciencelibrary.org.

Supplementary material

10914_2018_9458_MOESM1_ESM.docx (114 kb)
Supplementary Table 1 (DOCX 114 kb)
10914_2018_9458_MOESM2_ESM.docx (134 kb)
Supplementary Table 2 (DOCX 134 kb)
10914_2018_9458_MOESM3_ESM.xlsx (16 kb)
Supplementary Table 3 (XLSX 15 kb)

References

  1. Abbie AA (1937) Some observations on the major subdivisions of the Marsupialia: with especial reference to the position of the Peramelidae and Caenolestidae. J Anat 71:429-436Google Scholar
  2. Alpin KR, Archer M (1987) Recent advances in marsupial systematics, with a new syncretic classification. In: Archer M (ed) Possums and Opossums: Studies in Evolution, Vol. 1. Royal Zoological Society of New South Wales, Sydney, pp 15-72Google Scholar
  3. Ameghino F (1889) Contribucion al conocimiento de los mamiferos fosiles de la República Argentina: Obra escrita bajo los auspicios de la Academia nacional de ciencias de la República Argentina para ser presentada á la Exposicion universal de Paris de 1889 (Vol. 6). PE Coni é hijosGoogle Scholar
  4. Amico G, Aizen MA (2000) Ecology: mistletoe seed dispersal by a marsupial. Nature 408:929-930CrossRefGoogle Scholar
  5. Amico GC, Rodríguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35:8-13CrossRefGoogle Scholar
  6. Amico GC, Rodriguez-Cabal MA, Aizen MA (2011) Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south Andean mistletoe. Ecography 34:318-326CrossRefGoogle Scholar
  7. Amrine-Madsen H, Koepfli KP, Wayne RK, Springer MS (2003) A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol Phylogenet Evol 28:225-240CrossRefGoogle Scholar
  8. Armati PJ, Dickman CR, Hume ID (eds) (2006) Marsupials. Cambridge University Press, CambridgeGoogle Scholar
  9. Armesto JJ, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16:219-226CrossRefGoogle Scholar
  10. Ashwell K (2010) The Neurobiology of Australian Marsupials: Brain Evolution in the Other Mammalian Radiation. Cambridge University Press, CambridgeGoogle Scholar
  11. Ashwell KWS, McAllan BM, Mai JK, Paxinos G (2008) Cortical cyto- and chemoarchitecture in three small Australian marsupial carnivores: Sminthopsis macroura, Antechinus stuartii and Phascogale calura. Brain Behav Evol 72:215-232CrossRefGoogle Scholar
  12. Beck RMD (2008) A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. J Mammal 89:175-189Google Scholar
  13. Beck RMD (2012) An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99:715-729Google Scholar
  14. Berns GS, Ashwell KW (2017) Reconstruction of the cortical maps of the Tasmanian tiger and comparison to the Tasmanian devil. PLoS One 12:e0168993CrossRefGoogle Scholar
  15. Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American “living fossil”, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293-297CrossRefGoogle Scholar
  16. Burkitt AN (1938) The external morphology of the brain of Notoryctes typhlops. Proc Kon Ned Akad Wetensch 41:921-933Google Scholar
  17. Celis-Diez JL, Hetz J, Marín-Vial PA, Fuster G, Necochea P, Vásquez RA, Jaksic FM, Armesto JJ (2012) Population abundance, natural history, and habitat use by the arboreal marsupial Dromiciops gliroides in rural Chiloé Island, Chile. J Mammal 93:134-148CrossRefGoogle Scholar
  18. Condo GJ, Wilson PD (1990) Morphological organization of thalamic cortical relay cells in the dorsal lateral geniculate nucleus of the North American opossum. J Comp Neurol 292:303-319CrossRefGoogle Scholar
  19. D’Elía G, Hurtado N, D’Anatro A (2016) Alpha taxonomy of Dromiciops (Microbiotheriidae) with the description of 2 new species of monito del monte. J Mammal 97:1136–1152CrossRefGoogle Scholar
  20. Di Virgilio A, Amico GC, Morales JM (2014) Behavioral traits of the arboreal marsupial Dromiciops gliroides during Tristerix corymbosus fruiting season. J Mammal 95:1189-1198CrossRefGoogle Scholar
  21. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88CrossRefGoogle Scholar
  22. Duchêne DA, Bragg JG, Duchêne S, Neaves LE, Potter S, Moritz C, Johnson RN, Ho SYW, Eldridge MDB (2017) Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst Biol 67:400-412CrossRefGoogle Scholar
  23. Dunlop SA, Tee LBG, Beazley LD (2000) Topographic order of retinofugal axons in a marsupial: implications for map formation in visual nuclei. J Comp Neurol 428:33-44CrossRefGoogle Scholar
  24. Elgueta EI, Valenzuela J, Rau JR (2007) New insights into the prey spectrum of Darwin′s fox (Pseudalopex fulvipes Martin, 1837) on Chiloé Island, Chile. Mammal Biol 72:179-185CrossRefGoogle Scholar
  25. Elliot Smith G (1902a) The brains of the Mammalia. In: Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy Contained in the Museum of the Royal College of Surgeons of England 2:138-481Google Scholar
  26. Elliott Smith G (1902b) On a peculiarity of the cerebral commissures in certain Marsupialia, not hitherto recognised as a distinctive feature of the Diprotodontia. Proc Roy Soc Lond 70:226-231Google Scholar
  27. Fontúrbel FE, Candia AB, Botto-Mahan C (2014) Nocturnal activity patterns of the monito del monte (Dromiciops gliroides) in native and exotic habitats. J Mammal 95:1199-1206CrossRefGoogle Scholar
  28. Greer JK (1965) Mammals of Malleco Province, Chile. Publ Mus Mich State Univ, Biol Ser 3:49–152Google Scholar
  29. Gurovich Y, Bongers A, Ashwell KWS (2018) Magnetic resonance imaging of the brains of three peramelemorphian marsupials. J Mammal Evol 1-22  https://doi.org/10.1007/s10914-018-9429-x
  30. Gurovich Y, Stannard HJ, Old JM (2015) The presence of the marsupial Dromiciops gliroides in Parque Nacional Los Alerces, Chubut, southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption. Rev Chil Hist Nat 88:17CrossRefGoogle Scholar
  31. Hadj-Moussa H, Moggridge JA, Luu BE, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, Storey KB (2016) The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Sci Rep 6:24627.  https://doi.org/10.1038/srep24627 CrossRefGoogle Scholar
  32. Haight JR, Murray PF (1981) The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: an assessment of taxonomic relationships based upon comparisons with recent forms. Brain Behav Evol 19:17–36CrossRefGoogle Scholar
  33. Haight JR, Nelson JE (1987) A brain that doesn’t fit its skull: a comparative study of the brain and endocranium of the koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae). In: Archer M (ed) Possums and Opossums: Studies in Evolution, Vol 2. Royal Zoological Society of New South Wales, Sydney, pp 331–352Google Scholar
  34. Hardman CD, Ashwell KWS (2012) Stereotaxic and Chemoarchitectonic Atlas of the Brain of the Common Marmoset (Callithrix jacchus). CRC press, Boca RatonGoogle Scholar
  35. Hayhow WR (1967) The lateral geniculate nucleus of the marsupial phalanger, Trichosurus vulpecula. An experimental study of cytoarchitecture in relation to the intranuclear optic nerve projection fields. J Comp Neurol 131:571–604CrossRefGoogle Scholar
  36. Herrick CJ (1921) A monographic study of the American marsupial, Caenolestes. Field Mus Nat Hist Zool Ser 14:157–162 + 22 plsGoogle Scholar
  37. Hershkovitz P (1999) Dromiciops gliroides Thomas, 1894, last of the Microbiotheria (Marsupialia), with a review of the family Microbiotheriidae. Fieldiana Zool 93:1–60Google Scholar
  38. Himes CMT, MH Gallardo, Kenagy GJ (2008) Historical biogeography and post-glacial recolonization of South American temperate rain forest by the relictual marsupial Dromiciops gliroides. J Biogeogr 35:1415–1424CrossRefGoogle Scholar
  39. Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS One 4(12): e8278CrossRefGoogle Scholar
  40. Horovitz I, Sánchez-Villagra MR (2003) A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19:181-212CrossRefGoogle Scholar
  41. Jiménez J, Rageot R (1979) Notas sobre la biología del “monito del monte”, Dromiciops australis Philippi 1893. An Mus Hist Nat Valpso 12:83–88Google Scholar
  42. Johnson JI, Kirsch JAW, Reep RL, Switzer RC III (1994) Phylogeny through brain traits: more characters for the analysis of mammalian evolution. Brain Behav Evol 43:319–347CrossRefGoogle Scholar
  43. Johnson JI, Kirsch JAW, Switzer RC III (1982a) Phylogeny through brain traits: fifteen characters which adumbrate mammalian genealogy. Brain Behav Evol 20:72–83CrossRefGoogle Scholar
  44. Johnson JI, Kirsch JAW, Switzer RC III (1984) Brain traits through phylogeny: evolution of neural characters. Brain Behav Evol 24:169–176CrossRefGoogle Scholar
  45. Johnson JI, Marsh MP (1969) Laminated lateral geniculate in the nocturnal marsupial Petaurus breviceps (sugar glider). Brain Res 15:250–254CrossRefGoogle Scholar
  46. Johnson JI, Switzer RC III, Kirsch JAW (1982b) Phylogeny through brain traits: the distribution of categorizing characters in contemporary mammals. Brain Behav Evol 20:97–117CrossRefGoogle Scholar
  47. Kahn DM, Krubitzer L (2002) Retinofugal projections in the short-tailed opossum (Monodelphis domestica). J Comp Neurol 447:114–127CrossRefGoogle Scholar
  48. Karlen SJ, Krubitzer L (2006) Phenotypic diversity is the cornerstone of evolution: variation in cortical field size within short-tailed opossums. J Comp Neurol 499:990–999CrossRefGoogle Scholar
  49. Kirsch JAW, Dickerman AW, Reig OA, Springer MS (1991) DNA hybridization evidence for the Australasian affinity of the American marsupial Dromiciops australis. Proc Natl Acad Sci USA 88:10465-10469CrossRefGoogle Scholar
  50. Kirsch JAW, Johnson JI (1983) Phylogeny through brain traits: trees generated by neural characters. Brain Behav Evol 22:60–69CrossRefGoogle Scholar
  51. Kirsch JAW, Johnson JI, Switzer RC III (1983) Phylogeny through brain traits: the mammalian family tree. Brain Behav Evol 22:70–74CrossRefGoogle Scholar
  52. Lippolis G, Westman W, McAllan BM, Rogers LJ (2005) Lateralization of escape responses in the stripe-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupialia). Laterality 10:457–470CrossRefGoogle Scholar
  53. Loo YT (1931) The forebrain of the opossum, Didelphis virginiana. Part II. Histology. J Comp Neurol 52:1–148CrossRefGoogle Scholar
  54. Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934-1940Google Scholar
  55. Macrini TE, Muizon C de, Cifelli RL, Rowe T (2007) Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. J Vertebr Paleontol 27:99–107Google Scholar
  56. Maddison WP, Maddison DR (2016) Mesquite: a modular system for evolutionary analysis. Version 3.04.2015Google Scholar
  57. Mann G (1944) El cerebro de Marmosa elegans. Bol Mus Nac Hist Nat Santiago 22:197–235Google Scholar
  58. Mann G (1955) Monito del monte Dromiciops australis. Phillipi Inv Zool Chilenas 2:159–166Google Scholar
  59. Mann G (1978) Los pequeños mamíferos de Chile. Gayana Zoología 40:1–342Google Scholar
  60. Marshall LG (1978) Dromiciops australis. Mammal Species 99:1–5Google Scholar
  61. Martin GM (2008) Sistemática, distribución y adaptaciones de los marsupiales patagónicos. Dissertation, Universidad Nacional de La Plata, La PlataGoogle Scholar
  62. Martin GM (2010) Geographic distribution and historical occurrence of Dromiciops gliroides Thomas (Metatheria, Microbiotheria). J Mammal 91:1025–1035CrossRefGoogle Scholar
  63. Martin GM (2017) Intraspecific variability and variation in Dromiciops Thomas 1894 (Marsupialia, Microbiotheria, Microbiotheriidae). J Mammal 99:159–173CrossRefGoogle Scholar
  64. Martinez DR, Jaksic FM (1996) Habitat, relative abundance, and diet of rufous-legged owls (Strix rufipes King) in temperate forest remnants of southern Chile. Ecoscience 3:259–263CrossRefGoogle Scholar
  65. Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mammal Evol 15:1–36CrossRefGoogle Scholar
  66. Meredith RW, Westerman M, Springer MS (2009) A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol Phylogen Evol 51:554–571CrossRefGoogle Scholar
  67. Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, Edson J, Hopwood B, Male D, Armstrong KN, Meyer M, Hofreiter M, Austin J, Donnellan SC, Lee MSY, Phillips MJ, Cooper A (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31:2322–2330CrossRefGoogle Scholar
  68. Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436CrossRefGoogle Scholar
  69. Obenchain JB (1925) The brains of the South American marsupials Caenolestes and Orolestes. Field Mus Nat Hist Publ 224, Zool Ser 14:175–232Google Scholar
  70. Osgood WH (1943) The Mammals of Chile. Field Mus Nat Hist Fieldiana Zool 30:1–268Google Scholar
  71. Patterson B, Rogers M (2007) Order Microbiotheria Ameghino, 1889. In: Gardner AL (ed) Mammals of South America. Vol. 1. Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago, pp 117–119Google Scholar
  72. Paxinos G, Franklin KBJ (2004) The Mouse Brain in Stereotaxic Co-ordinates. Compact, second edition. Elsevier Academic, San DiegoGoogle Scholar
  73. Paxinos G, Huang XF, Toga AW (2000) The Rhesus Monkey Brain in Stereotaxic Co-ordinates. Academic Press, San DiegoGoogle Scholar
  74. Paxinos G, Watson CRR (1998) The Rat Brain in Stereotaxic Co-ordinates. Academic Press, San DiegoGoogle Scholar
  75. Philippi F (1893) Un nuevo marsupial chileno. Anal Univ Chile 86:31-34Google Scholar
  76. Pridmore PA (1994) Locomotion in Dromiciops australis (Marsupialia, Microbiotheriidae). Aust J Zool 42:679–699CrossRefGoogle Scholar
  77. Rau JR, Martínez DR, Low JR, Tilleria MS (1995) Depredación por zorros chillas (Pseudalopex griseus) sobre micromamíferos cursoriales, escansoriales y arborícolas en un área silvestre protegida del sur de Chile. Rev Chil Hist Nat 68:333–340Google Scholar
  78. Riek A, Geiser F (2014) Heterothermy in pouched mammals–a review. J Zool 292:74–85CrossRefGoogle Scholar
  79. Rodriguez-Cabal MA, Branch LC (2011) Influence of habitat factors on the distribution and abundance of a marsupial seed disperser. J Mammal 92:1245–1252CrossRefGoogle Scholar
  80. Rowe TB, Eiting TP, Macrini TE, Ketcham RA (2005) Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. J Mammal Evol 12:303–336CrossRefGoogle Scholar
  81. Salazar DA, Fontúrbel FE (2016) Beyond habitat structure: landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees. Integr Zool 11:413–421Google Scholar
  82. Sanderson KJ, Pearson LJ, Haight JR (1979) Retinal projections in the Tasmanian devil, Sarcophilus harrisii. J Comp Neurol 188:335–345Google Scholar
  83. Schneider NY, Gurovich Y (2017) Morphology and evolution of the oral shield in marsupial neonates including the newborn monito del monte (Dromiciops gliroides, Marsupialia Microbiotheria) pouch young. J Anat 231:59–83CrossRefGoogle Scholar
  84. Segall W (1969) The middle ear region of Dromiciops. Acta Anat 72:489–501CrossRefGoogle Scholar
  85. Suárez-Villota EY, Quercia CA, Nuñez JJ, Gallardo MH, Himes CM, Kenagy GJ (2018) Monotypic status of the South American relictual marsupial Dromiciops gliroides (Microbiotheria). J Mammal 99:803–812CrossRefGoogle Scholar
  86. Szalay FS (1982) A new appraisal of marsupial phylogeny and classification. In: Archer M (ed) Carnivorous Marsupials. Royal Zoological Society of New South Wales, Sydney, pp 621–640Google Scholar
  87. Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, New YorkGoogle Scholar
  88. Thomas O (1894) On Micoureus griseus, Desm., with the description of a new genus and species of Didelphyidae. Ann Mag Nat Hist 6:184–188CrossRefGoogle Scholar
  89. Thomas O (1919) On small mammals collected by Sr. E. Budin in northwestern Patagonia. Ann Mag Nat Hist 9:199–212CrossRefGoogle Scholar
  90. Valladares-Gómez A, Celis-Diez JL, Palma RE, Manríquez GS (2017) Cranial morphological variation of Dromiciops gliroides (Microbiotheria) along its geographical distribution in south-central Chile: a three-dimensional analysis. Z Säugetierk 87:107–117Google Scholar
  91. Watson CRR, Herron P (1977) The inferior olivary complex of marsupials. J Comp Neurol 176:527–538CrossRefGoogle Scholar
  92. Weisbecker V, Ashwell K, Fisher D (2013) An improved body mass dataset for the study of marsupial brain size evolution. Brain Behav Evol 82:81–82CrossRefGoogle Scholar
  93. Ziehen TH (1897) Das Centralnervensystem der Monotremen und Marsupialier. Ein Beitrag zur vergleichenden makroskopischenden Entwickelungsgeschichte des Wirbelthiergehirns. Teil I. Makroskopische Anatomie. Semon Zool Forschungsreis Aust Denkschr Med Nat Ges Jena 6:168–187Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anatomy, School of Medical SciencesThe University of New South WalesNew South WalesAustralia
  2. 2.CIEMEP, CONICET-UNPSJBEsquelArgentina

Personalised recommendations