Advertisement

Journal of Mammalian Evolution

, Volume 25, Issue 3, pp 407–425 | Cite as

Comparative Morphometry of Bactrian Camel and Dromedary

  • Pietro Martini
  • Peter Schmid
  • Loïc Costeur
Original Paper

Abstract

There are two living species of Old World camelids (Camelidae, Artiodactyla): the Bactrian camel (Camelus bactrianus) and the dromedary (Camelus dromedarius). Differences in osteology between them are poorly known, and this lack of knowledge hinders archaeological and paleontological research. Previous comparative studies have focused on subtle qualitative differences, which are subject to great intraspecific variation and interspecific overlap. In this study, we use simple morphometric methods and statistical analyses to compare the skeleton of Old World camels. Over the entire skeleton we were able to find several consistent differences, some univocal and highly diagnostic, others only slightly significant and noticeable only at a population level. Some of the distinctive traits are suggestive of previously unknown biological adaptations. In particular, the cranial anatomy of Bactrian camels shows characters correlated with increased grazing, while its limb muscle attachments may indicate additional need for lateral stability in a heavier animal. The presence and number of humps is reflected in the vertebral column, with several differences that will be helpful in the reconstruction of fossil species.

Keywords

Camelus Camelidae Morphometry Osteology 

Notes

Acknowledgements

We would like to thank the curators that granted access to the collections in their care: B. Oberholzer and M. Haffner (Zoologisches Museum der Universität Zürich), Pa. Schmid (Naturhistorisches Museum des Burgergemeindes Bern), J. Studer (Muséum d’Histoire Naturelle de la Ville de Genève), M. Podestà and G. Bardelli (Museo Civico di Storia Naturale Milano). P. martini is especially grateful to the Anthropologisches Institut und Museum der Universität Zürich, where this project was started as a Master thesis (Martini 2011). We thank the colleagues whose comments improved the manuscript: Y. Mary and V. De Pietri and in particular the reviewer D. Geraads. M. Mikelin helped prepare the illustrations. This study is part of P. Martini’s doctoral thesis, which is supported by the Swiss National Foundation, the Isaac Dreyfus-Bernheim Stiftung, and the Freiwillige Akademische Gesellschaft Basel.

Supplementary material

10914_2017_9386_MOESM1_ESM.pdf (1.8 mb)
Online Resource 1 (PDF 1807 kb)
10914_2017_9386_MOESM2_ESM.xlsx (29 kb)
Online Resource 2 (XLSX 28 kb)
10914_2017_9386_MOESM3_ESM.xlsx (686 kb)
Online Resource 3 (XLSX 685 kb)
10914_2017_9386_MOESM4_ESM.xlsx (317 kb)
Online Resource 4 (XLSX 317 kb)
10914_2017_9386_MOESM5_ESM.xlsx (350 kb)
Online Resource 5 (XLSX 349 kb)
10914_2017_9386_MOESM6_ESM.xlsx (201 kb)
Online Resource 6 (XLSX 201 kb)
10914_2017_9386_MOESM7_ESM.xlsx (226 kb)
Online Resource 7 (XLSX 226 kb)
10914_2017_9386_MOESM8_ESM.xlsx (183 kb)
Online Resource 8 (XLSX 182 kb)

References

  1. Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt D, Abdussamad AM, Uerpmann M, Uerpmann HP, De Cupere B, Magee P, Alnaqeeb MA, Salim B, Raziq A, Dessie T, Abdelhadi OM, Banabazi MH, Al-Eknah M, Walzer C, Faye B, Hofreiter M, Peters J, Hanotte O, Burger PA (2016) Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1519508113 PubMedPubMedCentralGoogle Scholar
  2. Barone R (1999) Anatomie comparée des mammifères domestiques, vol 1. 4th edn. Vigot Frères, ParisGoogle Scholar
  3. Beech M, Mashkour M, Huels M, Zazzo A (2009) Prehistoric camels in south-eastern Arabia: the discovery of a new site in Abu Dhabi's western region, United Arab Emirates. Proceedings of the Seminar for Arabian Studies 39:17–30Google Scholar
  4. Burger PA (2016) The history of Old World camelids in the light of molecular genetics. Trop Anim Health Prod. doi: 10.1007/s11250-016-1032-7 PubMedPubMedCentralGoogle Scholar
  5. Clutton-Brock J (1962) Analysis of mammalian faunas from prehistoric sites in India and western Asia. Ph.D. dissertation, University of London, LondonGoogle Scholar
  6. Crégut-Bonnoure E (2002) Les Ovibovini, Caprini et Ovini (Mammalia, Artiodactyla, Bovidae, Caprinae) du Plio-Pléistocène d'Europe: systématique, évolution et biochronologie. Ph.D. dissertation, Université Claude Bernard, LyonGoogle Scholar
  7. Cui P, Ji R, Ding F, Qi D, Gao H, Meng H, Yu J, Hu S, Zhang H (2007) A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of Camelidae. BMC Genomics 8:241. doi: 10.1186/1471-2164-8-241 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Curci A, Carletti M, Tosi M (2014) The camel remains from site HD-6 (Ra's al-Hadd, Sultanate of Oman): an opportunity for a critical review of dromedary findings in eastern Arabia. Anthropozoologica 49(2):207–222. doi: 10.5252/az2014n2a04 CrossRefGoogle Scholar
  9. De Grossi Mazzorin J (2006) Cammelli nell'antichità: le presenze in Italia. In: Sala B, Tecchiati U (eds) Archaeozoological Studies in Honour of Alfredo Riedel. Ufficio Beni Archeologici, Provincia di Bolzano, Bolzano, pp 231–242Google Scholar
  10. Drake AG, Klingenberg CP (2010) Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat 175 (3):289–301. doi: 10.1086/650372 CrossRefPubMedGoogle Scholar
  11. Driesch A von den (1976) A guide to the measurement of animal bones from archaeological sites, vol 1. Peabody Museum Bulletin. Harvard University, CambridgeGoogle Scholar
  12. Driesch A von den, Obermaier H (2007) The hunt for wild dromedaries during the 3rd and 2nd millennia BC on the United Arab Emirates coast. Camel bone finds from the excavations at al Sufouh 2, Dubai, UAE. In: Grupe J, Peters J (eds) Skeletal Series and Their Socio-economic Context. Documenta Archaeobiologiae, vol 5. Leidorf, Rahden, pp 133–167Google Scholar
  13. Epstein H, Mason IL (1971) The Origin of the Domestic Animals of Africa. Africana Publishing Corporation, New YorkGoogle Scholar
  14. Feranec RS (2003) Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29 (2):230–242CrossRefGoogle Scholar
  15. Grigson C (1983) A very large camel from the upper Pleistocene of the Negev Desert. J Archaeol Sci 10:311–316CrossRefGoogle Scholar
  16. Grigson C (2012) Camels, copper and donkeys in the early Iron Age of the southern Levant: Timna revisited. Levant 44 (1):82–100. doi: 10.1179/175638012x13285409187919 CrossRefGoogle Scholar
  17. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis, version 2.17c. Paleontol electron 4 (1):9Google Scholar
  18. Hare J (2008) Camelus ferus. IUCN 2013. IUCN red list of threatened species. Version 2013.1.Google Scholar
  19. Harris JM, Geraads D, Solounias N (2010) Camelidae. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, London, pp 815–820CrossRefGoogle Scholar
  20. Honey JJ, Harrison JA, Prothero DR, Stevens MS (1998) Camelidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, vol 1. Cambridge University Press, Cambridge, pp 439–462Google Scholar
  21. Janis CM, Theodor JM, Boisvert B (2002) Locomotor evolution in camels revisited: a quantitative analysis of pedal anatomy and the acquisition of the pacing gait. J Vertebr Paleontol 22(1):110–121. doi: 10.1671/0272-4634(2002)022[0110:leicra]2.0.co;2 CrossRefGoogle Scholar
  22. Ji R, Cui P, Ding F, Geng J, Gao H, Zhang H, Yu J, Hu S, Meng H (2009) Monophyletic origin of domestic Bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus). Anim Genet 40 (4):377–382. doi: 10.1111/j.1365-2052.2008.01848.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kinne J, Wani NA, Wernery U, Peters J, Knospe C (2010) Is there a two-humped stage in the embryonic development of the dromedary? Anat Histol Embryol 39(5):479–480. doi: 10.1111/j.1439-0264.2010.01011.x PubMedGoogle Scholar
  24. Köhler-Rollefson IU (1989) Zoological analysis of camel skeletons. In: Smith RH, Day LP (eds) Pella of the Decapolis, Vol. 2, Final Report on the College of Wooster Excavations in Area IX, the Civic Complex, 1979–1985. The College of Wooster, Wooster, pp 142–164Google Scholar
  25. Köhler-Rollefson IU (1991) Camelus dromedarius. Mammal Species 375:1–8CrossRefGoogle Scholar
  26. Köhler-Rollefson IU (1993) Camels and camel pastoralism in Arabia. The Biblical Archaeologist 56 (4):180–188CrossRefGoogle Scholar
  27. Kostopoulos DS, Sen S (1999) Late Pliocene (Villafranchian) mammals from Sarikol Tepe, Ankara, Turkey. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 39:165–202Google Scholar
  28. Lesbre F-X (1903) Recherches anatomiques sur les Camélidés. In: Georg H (ed) Archives du Muséum d'Histoire Naturelle de Lyon, vol 8. Lyon, pp 1–196Google Scholar
  29. Likius A, Brunet M, Geraads D, Vignaud P (2003) Le plus vieux Camelidae (Mammalia, Artiodactyla) d'Afrique: limite Mio-Pliocène, Tchad. Bulletin de la Société Géologique de France 174 (2):187–193CrossRefGoogle Scholar
  30. Lombardini L (1879) Monografia dei Cammelli. Annali delle Università Toscane 259:147–187Google Scholar
  31. Manefield GW, Tinson AH (1996) Camels: A Compendium. vol 22. University of Sydney Post Graduate Foundation in Veterinary ScienceGoogle Scholar
  32. Martini P (2011) A metrical analysis of the morphological variation in extant and fossil camels. Master's thesis, University of Zürich, ZürichGoogle Scholar
  33. Mendoza M, Janis CM, Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool 258:223–246. doi: 10.1017/S0952836902001346 CrossRefGoogle Scholar
  34. Mikesell MW (1955) Notes on the dispersal of the dromedary. Southwestern J Anthropol 11(3):231–245CrossRefGoogle Scholar
  35. Morales J, Soria D, Aguirre E (1980) Camelido finimioceno en Venta del Moro. Primera cita para Europa Occidental. Estudios Geológicos 36:139–142Google Scholar
  36. Nowak RM (1999) Walker's Mammals of the World. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  37. Olsen SJ (1988) The camel in ancient China and an osteology of the camel. Proc Acad Nat Sci Philadelphia 140 (1):18–58Google Scholar
  38. Owen J, Dobney K, Evin A, Cucchi T, Larson G, Strand Vidarsdottir U (2014) The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. J Archaeol Sci 43:159–167. doi: 10.1016/j.jas.2013.12.010 CrossRefGoogle Scholar
  39. Palmqvist P, Arribas A, Martínez-Navarro B (1999) Ecomorphological study of large canids from the lower Pleistocene of southeastern Spain. Lethaia 32:75–88CrossRefGoogle Scholar
  40. Peters J (1998) Camelus thomasi Pomel, 1893, a possible ancestor of the one-humped camel? Z Säugertierk 63:372–376Google Scholar
  41. Peters J, Driesch A von den (1997) The two-humped camel (Camelus bactrianus): New light on its distribution, management and medical treatment in the past. J Zool 242:651–679Google Scholar
  42. Pfau T, Hinton E, Whitehead C, Wiktorowicz-Conroy A, Hutchinson JR (2011) Temporal gait parameters in the alpaca and the evolution of pacing and trotting locomotion in the Camelidae. J Zool 283 (3):193–202. doi: 10.1111/j.1469-7998.2010.00763.x CrossRefGoogle Scholar
  43. Pigière F, Henrotay D (2012) Camels in the northern provinces of the Roman Empire. J Archaeol Sci 39 (5):1531–1539. doi: 10.1016/j.jas.2011.11.014 CrossRefGoogle Scholar
  44. Potts DT (2004) Camel hybridization and the role of Camelus bactrianus in the ancient Near East. J Econ Soc Hist Orient 47 (2):143–165CrossRefGoogle Scholar
  45. Reynaud-Savioz N, Morel P (2005) La faune de Nadaouiyeh Aïn Askar (Syrie centrale, Pléistocène moyen): aperçu et perspectives. Revue de Paléobiologie Genève 10:31–35Google Scholar
  46. Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M (2013) Mid-Pliocene warm-period deposits in the high Arctic yield insight into camel evolution. Nat Commun 4:1550. doi: 10.1038/ncomms2516 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Saalfeld WK, Edwards GP (2010) Distribution and abundance of the feral camel (Camelus dromedarius) in Australia. The Rangeland Journal 32 (1):1–9. doi: 10.1071/RJ09058 CrossRefGoogle Scholar
  48. Semprebon GM, Rivals F (2010) Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeogr Palaeoclimatol Palaeoecol 295 (1–2):131–145. doi: 10.1016/j.palaeo.2010.05.033 CrossRefGoogle Scholar
  49. Smuts MMS, Bezuidenhout AJ (1987) Anatomy of the Dromedary. Oxford University Press, OxfordGoogle Scholar
  50. Spassov N, Stoytchev T (2004) The dromedary domestication problem: 3000 BC rock art evidence for the existence of wild one-humped camel in central Arabia. Historia naturalis bulgarica 16:151–158Google Scholar
  51. Steiger C (1990) Vergleichend morphologische Untersuchungen an Einzelknochen des postkranialen Skeletts der Altweltkamele. Ph.D. dissertation, Ludwig-Maximilians-Universität München, MünchenGoogle Scholar
  52. Studer J, Schneider A (2008) Camel use in the Petra region, Jordan: 1st century BC to 4th century AD. In: Vila E, Gourichon L, Choyke AM, Buitenhuis H (eds) Archaeozoology of the Near East VIII. International Symposium on the Archaeozoology of Southwestern Asia and Adjacent Areas, Lyon, 2006. Maison de l'Orient et de la Méditerranée, pp 581–596Google Scholar
  53. Uerpmann H-P (1999) Camel and horse skeletons from protohistoric graves at Mleiha in the emirate of Sharjah (U.A.E.). Arabian archaeology and epigraphy 10:102–118CrossRefGoogle Scholar
  54. Uerpmann M, Uerpmann H-P (2002) The appearance of the domestic camel in south-east Arabia. Journal of Oman Studies 12:235–260Google Scholar
  55. Van der Made J, Morales J, Sen S, Aslan F (2002) The first camel from the upper Miocene of Turkey and the dispersal of the camels into the Old World. Comptes Rendus Palevol 1:117–122CrossRefGoogle Scholar
  56. Van der Sluijs L, Gerken M, Preuschoft H (2010) Comparative analysis of walking gaits in South American camelids. J Zool 282 (4):291–299. doi: 10.1111/j.1469-7998.2010.00739.x CrossRefGoogle Scholar
  57. Wapnish P (1981) Camel caravans and camel pastoralists at Tell Jemmeh. JANES 13:101–121Google Scholar
  58. Wapnish P (1984) The dromedary and Bactrian camel in Levantine historical settings: the evidence from Tell Jemmeh. In: Clutton-Brock J, Grigson C (eds) Animals and Archaeology: 3. Early Herders and Their Flocks. British Archaeological Reports, International Series, Oxford, pp 171–200Google Scholar
  59. Wu H, Guang X, Al-Fageeh MB, Cao J, Pan S, Zhou H, Zhang L, Abutarboush MH, Xing Y, Xie Z, Alshanqeeti AS, Zhang Y, Yao Q, Al-Shomrani BM, Zhang D, Li J, Manee MM, Yang Z, Yang L, Liu Y, Zhang J, Altammami MA, Wang S, Yu L, Zhang W, Liu S, Ba L, Liu C, Yang X, Meng F, Li L, Li E, Li X, Wu K, Zhang S, Wang J, Yin Y, Yang H, Al-Swailem AM (2014) Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun 5:5188. doi: 10.1038/ncomms6188 CrossRefPubMedGoogle Scholar
  60. Zeder MA (2012) Pathways to animal domestication. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire OE, Qualset CO (eds) Biodiversity in Agricolture: Domestication, Evolution, and Sustainability. Cambridge University Press, Cambridge, pp 227–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institut für Prähistorische und Naturwissenschaftliche ArchäologieUniversität BaselBaselSwitzerland
  2. 2.Naturhistorisches Museum BaselBaselSwitzerland
  3. 3.Evolutionary Science InstituteUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations