Circ-TFCP2L1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer through Sponging miR-7 by Inhibiting PAK1

  • Qian Wang
  • Zhouxiao Li
  • Yun Hu
  • Wubin Zheng
  • Weiwei Tang
  • Changyuan Zhai
  • Zhutong Gu
  • Jing TaoEmail author
  • Hanjin WangEmail author


CircRNAs are essential factors that have been verified to regulate various forms of carcinogenesis. However, the role of circRNAs in triple negative breast cancer (TNBC) tumourigenesis is not well clarified. In this study, we explored the circRNA expression profiles and possible modulation mechanism of circRNAs on triple negative breast cancer tumourigenesis. We used three pairs of triple negative breast cancer tissues and adjacent noncancerous tissues to perform a human circRNA microarray for screening of circRNA expression patterns in TNBC. The results showed that circ-TFCP2L1 was significantly up-regulated in TNBC tissues and cells, tending to have a shorter disease-free survival of TNBC patients. In vitro loss-of-function experiments showed that knockdown of circ-TFCP2L1 significantly suppressed the proliferation and migration of TNBC cells. Moreover, the results showed that the proliferation and migration capabilities and PAK1 expression in TNBC cells treated with si-circ-TFCP2L1 + miR-7 mimics were significantly suppressed compared with the normal group. Therefore, circ-TFCP2L1 was identified as a sponge of miR-7 functionally targeting PAK1 and further promoting the proliferation and migration of TNBC cells. Taken together, the results from our study reveal a novel regulatory mechanism and offer novel insight into the role of circ-TFCP2L1 in progression of triple negative breast cancer.


circRNAs Microarray Sponge Proliferation Migration 


Funding Information

This work was supported by the Medical Science and Technology Development Foundation (ZKX18027) for Hanjin Wang and by the Nanjing Municipal Health Planning Commission (YKK17264) for Jing Tao.

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflicts of interest in this work.

Supplementary material

10911_2019_9440_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefGoogle Scholar
  2. 2.
    DeSantis CE, Fedewa SA, Goding Sauer A, et al. Breast cancer statistics,2015: convergence of incidence ratesbetween black and white women. CA Cancer J Clin. 2016;66(1):31–42.CrossRefGoogle Scholar
  3. 3.
    Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89.CrossRefGoogle Scholar
  4. 4.
    Chacón RD, Costanzo MV. Triple-negative breast cancer. Breast Cancer Res. 2010;12(Suppl 2):S3.CrossRefGoogle Scholar
  5. 5.
    Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.Google Scholar
  6. 6.
    Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016;143(11):1838–47.CrossRefGoogle Scholar
  7. 7.
    Wahl MC, Will CL, Lührmann R, et al. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.CrossRefGoogle Scholar
  8. 8.
    Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C, et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 2018;495(1):189–96.CrossRefGoogle Scholar
  9. 9.
    Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8(37):61687–97.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17(1):19.CrossRefGoogle Scholar
  11. 11.
    Zhou J, Zhang WW, Peng F, Sun JY, He ZY, Wu SG. Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3. Cancer Manag Res. 2018;10:535–44.CrossRefGoogle Scholar
  12. 12.
    Liu Y, Lu C, Zhou Y, Zhang Z, Sun L. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem Biophys Res Commun. 2018;502(3):358–63.CrossRefGoogle Scholar
  13. 13.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefGoogle Scholar
  14. 14.
    Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE. 2016;11:e0158347.CrossRefGoogle Scholar
  15. 15.
    Xu B, Yang TY, Wang Z, Zhang Y, Liu S, Shen M. CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag Res. 2018;10:4871–80.CrossRefGoogle Scholar
  16. 16.
    Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.CrossRefGoogle Scholar
  17. 17.
    Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94.CrossRefGoogle Scholar
  18. 18.
    Taborda MI, Ramirez S, Bernal G. Circular RNAs in colorectal cancer: possible roles in regulation of cancer cells. World J Gastrointest Oncol. 2017;9(2):62–9.CrossRefGoogle Scholar
  19. 19.
    Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 2017;8(42):73271–81.CrossRefGoogle Scholar
  20. 20.
    Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.CrossRefGoogle Scholar
  21. 21.
    Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, et al. Circular RNA hsa_circ_0001982 promotes breast Cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017;36(11):901–8.CrossRefGoogle Scholar
  22. 22.
    Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett. 2014;231(1):82–91.CrossRefGoogle Scholar
  23. 23.
    Ma C, Qi Y, Shao L, Liu M, Li X, Tang H. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells. IUBMB Life. 2013;65(12):1026–34.CrossRefGoogle Scholar
  24. 24.
    Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–68.CrossRefGoogle Scholar
  25. 25.
    Wang K, Gao W, Dou Q, Chen H, Li Q, Nice EC, et al. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. Autophagy. 2016;12(12):2498–9.CrossRefGoogle Scholar
  26. 26.
    Zhan MN, Yu XT, Tang J, Zhou CX, Wang CL, Yin QQ, et al. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis. 2017;8(1):e2529.CrossRefGoogle Scholar
  27. 27.
    Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31(29):3397–408.CrossRefGoogle Scholar
  28. 28.
    Yue K, Wang X, Wu Y, Zhou X, He Q, Duan Y. microRNA-7 regulates cell growth, migration and invasion via direct targeting of PAK1 in thyroid cancer. Mol Med Rep. 2016;14(3):2127–34.CrossRefGoogle Scholar
  29. 29.
    Lu J, Zhang PY, Xie JW, et al. Circular RNA hsa_circ_0006848 related to ribosomal protein L6 acts as a novel biomarker for early gastric Cancer. Dis Markers. 2019;2019:3863458.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang C, Tan S, Liu WR, Lei Q, Qiao W, Wu Y, et al. RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol Cancer. 2019;18(1):134.CrossRefGoogle Scholar
  31. 31.
    Gao D, Qi X, Zhang X, Fang K, Guo Z, Li L. hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Mol Carcinog. 2019;58(4):554–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qian Wang
    • 1
  • Zhouxiao Li
    • 2
  • Yun Hu
    • 3
  • Wubin Zheng
    • 1
  • Weiwei Tang
    • 1
  • Changyuan Zhai
    • 4
  • Zhutong Gu
    • 5
  • Jing Tao
    • 4
    Email author
  • Hanjin Wang
    • 1
    Email author
  1. 1.Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
  2. 2.Department of Hand Surgery, Plastic Surgery and Aesthetic SurgeryLudwig-Maximilians UniversityMunichGermany
  3. 3.Department of General SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
  4. 4.Department of General Surgery, Nanjing Pukou HospitalNanjing Medical UniversityNanjingChina
  5. 5.Department of General SurgeryNanjing Pukou Hospital, Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations