Advertisement

Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features

  • Mark S. Ladinsky
  • Gonzalo A. Mardones
  • David J. Orlicky
  • Kathryn E. Howell
  • James L. McManamanEmail author
Article
  • 64 Downloads

Abstract

Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation. As yet these processes are poorly defined due to limited understanding of LD-ER interactions. To overcome these limitations, we used rapid-freezing and freeze-substitution methods in conjunction with 3D electron tomography and high resolution immunolocalization to define interactions between LD with ER in MEC of pregnant and lactating rats. Using these approaches, we identified distinct ER domains that contribute to lipid droplet formation and stabilization and which possess unique features previously unrecognized or not fully appreciated. Our results show nascent lipid droplets within the ER lumen and the association of both forming and mature droplets with structurally unique regions of ER cisternae, characterized by the presence of perilipin-2, a protein implicated in lipid droplet formation, and enzymes involved in lipid synthesis. These data demonstrate that milk lipids originate from LD-ER domains with novel structural features and suggest a mechanism for initial droplet formation in the ER lumen and subsequent maturation of the droplets in association with ER cisternae.

Keywords

Mammary gland Lipid droplet Endoplasmic reticulum domain Electron microscopy Tomography Differentiation 

Abbreviations

Acat1

Acyl-CoA cholesterol acyltransferase-1

Dgat

Acyl-CoA diacylglycerol acyltransferase

EM

Electron microscopy

ER

Endoplasmic reticulum

LD

Lipid droplets

MEC

Mammary epithelial cell

MFG

Milk fat globules

NR

Nile red

Plin2

Perilipin-2

P5

Pregnancy day 5

P10

Pregnancy day 10

PDI

Protein disulfide isomerase

3D

Three-dimensional

2D

Two-dimensional

Notes

Acknowledgements

We thank Dr. Robert Farese Jr., Harvard School of Public Health for the antibodies against Dgat1 and Dgat2 and Dr. T.Y. Chang of Dartmouth Medical School for the antibodies Acat1. This work was supported by NIH grants PO1GM61306 (KEH); 5PO1HD038129 (KEH); 2PO1HD038129 (JLM); and 2R01HD45965 and R01HD093729 (JLM).

References

  1. 1.
    Oftedal OT. Milk composition, milk yield and energy output at peak lactation: a comparative review. 1984;51:33-85.Google Scholar
  2. 2.
    Walther TC, Chung J, Farese RV Jr. Lipid Droplet Biogenesis. Annu Rev Cell Dev Biol. 2017;33:491–510.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 2002;277(46):44507–12.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman J. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 2000;21(16):3470–82.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 2011;3(3).PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Greenberg AS, Coleman RA, Kraemer FB, McManaman J, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    McManaman JL. Milk lipid secretion: recent biomolecular aspects. Biomol Concepts. 2012;3:581–91.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Butovich IA. Meibomian glands, meibum, and meibogenesis. Exp Eye Res. 2017;163:2–16.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schneider MR. Lipid droplets and associated proteins in sebocytes. Exp Cell Res. 2016;340(2):205–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Oftedal OT, Iverson SJ. Comparative analysis of nonhuman milks. In handbook of Milk composition (Jensen, R.G. ed), pp 749-789, academic press; 1995.Google Scholar
  11. 11.
    Hollmann KH. Cytology and fine structure of the mammary gland. In lactation (Larson BL, Smith VR eds), pp 3-95, Academic Press; 1974.Google Scholar
  12. 12.
    Wooding FBP. Comparative mammary fine structure. In comparative aspects of lactation (Peaker, M. ed), pp. 1-41, Academic Press. 1977.Google Scholar
  13. 13.
    Mellenberger RW, Bauman DE. Metabolic adaptations during lactogenesis. Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation. Biochem J. 1974;138(3):373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Anderson SM, et al. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res. 2007;9(1):204.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stein O, Stein Y. Lipid synthesis, intracellular transport, and secretion. II Electron microscopic radioautographic study of the mouse lactating mammary gland. J Cell Biol. 1967;34(1):251–63.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Keenan TW, Dylewski DP. Aspects of intracellular transit of serum and lipid phases of milk. J Dairy Sci. 1985;68(4):1025–40.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Heid HW, Keenan TW. Intracellular origin and secretion of milk fat globules. Eur J Cell Biol. 2005;84(2–3):245–58.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol. 2015;211(2):261–71.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013;14(12):775–86.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang H et al. Seipin is required for converting nascent to mature lipid droplets Elife 5. 2016.Google Scholar
  21. 21.
    Choudhary V, Jacquier N, Schneiter R. The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Commun Integr Biol. 2011;4(6):781–4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci. 2006;119(Pt 20):4215–24.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ploegh HL. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature. 2007;448(7152):435–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Al-Amoudi A, et al. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol. 2004;148(1):131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Fujimoto T, Ohsaki Y, Suzuki M, Cheng J. Imaging lipid droplets by electron microscopy. Methods Cell Biol. 2013;116:227–51.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pfeiffer S, Vielhaber G, Vietzke JP, Wittern KP, Hintze U, Wepf R. High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. J Invest Dermatol. 2000;114(5):1030–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    McIntosh JR. Electron microscopy of cells: a new beginning for a new century. J Cell Biol. 2001;153(6):F25–32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wu CC, Yates JR 3rd, Neville MC, Howell KE. Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic. 2000;1(10):769–82.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Orlicky DJ, Degala G, Greenwood C, Bales ES, Russell TD, McManaman J. Multiple functions encoded by the N-terminal PAT domain of adipophilin. J Cell Sci. 2008;121(Pt 17):2921–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Morphew MK, McIntosh JR. The use of filter membranes for high-pressure freezing of cell monolayers. J Microsc. 2003;212(Pt 1):21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kremer JR, Mastronarde DN, McIntosh J. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996;116(1):71–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ladinsky MS, Wu CC, McIntosh S, McIntosh J, Howell KE. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell. 2002;13(8):2810–25.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3(3):259–73.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L. Structure of the Golgi apparatus in stimulated and nonstimulated acinar cells of mammary glands of the rat. Anat Rec. 1993;237:308–17.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L. Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat. Anat Rec. 1993;235(3):363–73.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, et al. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res. 2007;48(7):1463–75.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Russell TD, Schaack J, Orlicky DJ, Palmer C, Chang BH, Chan L, et al. Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J Cell Sci. 2011;124(Pt 19):3247–53.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mastronarde DN. Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol. 1997;120(3):343–52.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Robenek H, Robenek MJ, Troyer D. PAT family proteins pervade lipid droplet cores. J Lipid Res. 2005;46(6):1331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol. 2014;204(5):635–46.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49(11):2283–301.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chang TY, Chang CC, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–57.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100(3):965–73.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    McIntosh R, Nicastro D, Mastronarde D. New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 2005;15(1):43–51.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Salo VT, Ikonen E. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol. 2019;57:64–70.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 2005;118(Pt 12):2601–11.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci. 2008;121(Pt 14):2415–22.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci. 2011;124(Pt 14):2424–37.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–99.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, et al. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J. 2016;35(24):2699–716.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wilfling F, et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife. 2014;3:e01607.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Salo VT et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev Cell. 2019.Google Scholar
  53. 53.
    English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5(4):a013227.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    El Zowalaty AE, et al. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod. 2018;98(4):570–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Orlicky DJ, Libby AE, Bales ES, McMahan R, Monks J, la Rosa FG, et al. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol. 2019;597(6):1565–84.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chong BM et al. The adipophilin C-terminus is a self-folding membrane binding domain that is important for milk lipid secretion. J Biol Chem. 2011.Google Scholar
  57. 57.
    Libby AE, Bales E, Orlicky DJ, McManaman J. Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic Lipidome. J Biol Chem. 2016;291(46):24231–46.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mishra S, Khaddaj R, Cottier S, Stradalova V, Jacob C, Schneiter R. Mature lipid droplets are accessible to ER luminal proteins. J Cell Sci. 2016;129(20):3803–15.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJ, et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol. 2013;203(6):985–1001.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Boulder Laboratory for 3D Electron Microscopy of CellsUniversity of ColoradoBoulderUSA
  2. 2.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Cell & Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  4. 4.Instituto de FisiologiaUniversidad Austral de ChileValdivaChile
  5. 5.Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  6. 6.Division of Reproductive SciencesUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations