In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ

  • Ethan J. Brock
  • Kyungmin Ji
  • Seema Shah
  • Raymond R. Mattingly
  • Bonnie F. Sloane


About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.


2D cultures 3D cultures Co-cultures Tumor microenvironment Natural matrices Synthetic matrices Engineered microfluidic platforms Preclinical screens 







Ductal carcinoma in situ


Invasive ductal carcinoma


Estrogen receptor


Progesterone receptor


Human epidermal growth factor receptor 2




Triple-negative breast cancers


Epidermal growth factor


Epidermal growth factor receptor


Hepatocyte growth factor


Hepatocyte growth factor receptor


Peroxisome proliferator-activated receptor gamma


Reconstituted basement membrane


Matrix metalloproteinase


Extracellular matrix


Lysosome-associated membrane protein-2


C-C motif chemokine ligand 20


Carcinoma-associated fibroblast


Myoepithelial cells


Dye quenched


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.PubMedGoogle Scholar
  2. 2.
    Lari SA, Kuerer HM. Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer. 2011;2:232–61.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol. 2013;7(5):859–69.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Weigelt B, Bissell MJ. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol. 2008;18(5):311–21.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Weigelt B, Ghajar CM, Bissell MJ. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev. 2014;69-70:42–51.PubMedGoogle Scholar
  6. 6.
    Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci. 2003;116(Pt 12):2377–88.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Sato G. Tissue culture: the unrealized potential. Cytotechnology. 2008;57(2):111–4.PubMedGoogle Scholar
  8. 8.
    Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10(4):241–53.PubMedGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedGoogle Scholar
  10. 10.
    van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C. Human cancer cell lines: experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta. 2009;1795(2):92–103.PubMedGoogle Scholar
  11. 11.
    Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Miller FR, Santner SJ, Tait L, Dawson PJ. xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst. 2000;92(14):1185–6.PubMedGoogle Scholar
  13. 13.
    Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11(5):R66.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res. 2009;69(23):9148–55.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Li Q, Mullins SR, Sloane BF, Mattingly RR. p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia. 2008;10(4):314–29.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMedGoogle Scholar
  17. 17.
    Basolo F, Elliott J, Tait L, Chen XQ, Maloney T, Russo IH, et al. Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol Carcinog. 1991;4(1):25–35.PubMedGoogle Scholar
  18. 18.
    Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, et al. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol. 2016;240(3):315–28.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI, et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004;64(13):4585–92.PubMedGoogle Scholar
  20. 20.
    Li T, Sparano JA. Inhibiting Ras signaling in the therapy of breast cancer. Clin Breast Cancer. 2003;3(6):405–16. discussion 17-20PubMedGoogle Scholar
  21. 21.
    Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA, et al. A human breast cell model of preinvasive to invasive transition. Cancer Res. 2008;68(5):1378–87.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci. 1998;95(25):14821–6.PubMedGoogle Scholar
  23. 23.
    Sartor CI, Dziubinski ML, Yu CL, Jove R, Ethier SP. Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res. 1997;57(5):978–87.PubMedGoogle Scholar
  24. 24.
    Forozan F, Veldman R, Ammerman CA, Parsa NZ, Kallioniemi A, Kallioniemi OP, et al. Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer. 1999;81(8):1328–34.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, et al. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One. 2012;7(12):e50249.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Eck SM, Côté AL, Winkelman WD, Brinckerhoff CE. CXCR4 and matrix Metalloproteinase-1 are elevated in breast carcinoma–associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Mol Cancer Res. 2009;7(7):1033.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 2012;72(17):4574–86.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Curigliano G, Disalvatore D, Esposito A, Pruneri G, Lazzeroni M, Guerrieri-Gonzaga A, et al. Risk of subsequent in situ and invasive breast cancer in human epidermal growth factor receptor 2-positive ductal carcinoma in situ. Ann Oncol. 2015;26(4):682–7.PubMedGoogle Scholar
  29. 29.
    Mustafa RE, DeStefano LM, Bahng J, Yoon-Flannery K, Fisher CS, Zhang PJ, et al. Evaluating the risk of upstaging HER2-positive DCIS to invasive breast Cancer. Ann Surg Oncol. 2017;24(10):2999–3003.PubMedGoogle Scholar
  30. 30.
    Band V, Zajchowski D, Swisshelm K, Trask D, Kulesa V, Cohen C, et al. Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 1990;50(22):7351–7.PubMedGoogle Scholar
  31. 31.
    Souter LH, Andrews JD, Zhang GH, Cook AC, Postenka CO, Al-Katib W, et al. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns. Lab Investig. 2010;90(8):1247–58.PubMedGoogle Scholar
  32. 32.
    Yong JW, Choong ML, Wang S, Wang Y, Lim SQ, Lee MA. Characterization of ductal carcinoma in situ cell lines established from breast tumor of a Singapore Chinese patient. Cancer Cell Int. 2014;14(1):94.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Scribner KC, Behbod F, Porter WW. Regulation of DCIS to invasive breast cancer progression by Singleminded-2s (SIM2s). Oncogene. 2013;32(21):2631–9.PubMedGoogle Scholar
  34. 34.
    Scribner KC, Wellberg EA, Metz RP, Porter WW. Singleminded-2s (Sim2s) promotes delayed involution of the mouse mammary gland through suppression of Stat3 and NFκB. Mol Endocrinol. 2011;25(4):635–44.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gustafson TL, Wellberg E, Laffin B, Schilling L, Metz RP, Zahnow CA, et al. Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPβ. Oncogene. 2009;28:1561.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T, et al. Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug and matrix metalloprotease 2. Mol Cell Biol. 2008;28(6):1936–46.PubMedGoogle Scholar
  37. 37.
    Kwak HI, Gustafson T, Metz RP, Laffin B, Schedin P, Porter WW. Inhibition of breast cancer growth and invasion by single-minded 2s. Carcinogenesis. 2007;28(2):259–66.PubMedGoogle Scholar
  38. 38.
    Wellberg E, Metz RP, Parker C, Porter WW. The bHLH/PAS transcription factor singleminded 2s promotes mammary gland lactogenic differentiation. Development. 2010;137(6):945–52.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ory V, Kietzman WB, Boeckelman J, Kallakury BV, Wellstein A, Furth PA, et al. The PPARgamma agonist efatutazone delays invasive progression and induces differentiation of ductal carcinoma in situ. Breast Cancer Res Treat. 2018;169(1):47–57.PubMedGoogle Scholar
  40. 40.
    Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4(1):61–70.PubMedGoogle Scholar
  41. 41.
    Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of met. Breast Cancer Res. 2012;14(4):R104.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, Guillem V, et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol. 2005;23(23):5323–33.PubMedGoogle Scholar
  43. 43.
    Tan AR, Yang X, Hewitt SM, Berman A, Lepper ER, Sparreboom A, et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol. 2004;22(15):3080–90.PubMedGoogle Scholar
  44. 44.
    Linklater ES, Tovar EA, Essenburg CJ, Turner L, Madaj Z, Winn ME, et al. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers. Oncotarget. 2016;7(43):69903–15.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Maroun CR, Rowlands T. The met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142(3):316–38.PubMedGoogle Scholar
  46. 46.
    Liu X, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2010;16(1):37–45.PubMedGoogle Scholar
  47. 47.
    Li Q, Xia J, Yao Y, Gong DW, Shi H, Zhou Q. Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells. Breast Cancer Res Treat. 2013;141(2):317–24.PubMedGoogle Scholar
  48. 48.
    Gernapudi R, Yao Y, Zhang Y, Wolfson B, Roy S, Duru N, et al. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat. 2015;150(3):685–95.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013;13(7):511–8.PubMedGoogle Scholar
  50. 50.
    Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30(42):4297–306.PubMedGoogle Scholar
  51. 51.
    Damaghi M, Tafreshi NK, Lloyd MC, Sprung R, Estrella V, Wojtkowiak JW, et al. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat Commun. 2015;6:8752.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8(1):56–61.PubMedGoogle Scholar
  53. 53.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.PubMedGoogle Scholar
  54. 54.
    Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol. 2013;4(370):370.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524–35.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, et al. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res. 2017;19(1):56.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Osuala KO, Sameni M, Shah S, Aggarwal N, Simonait ML, Franco OE, et al. Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer. 2015;15(1):584.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Carter EP, Gopsill JA, Gomm JJ, Jones JL, Grose RP. A 3D in vitro model of the human breast duct: a method to unravel myoepithelial-luminal interactions in the progression of breast cancer. Breast Cancer Res. 2017;19(1):50.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer. 2015;15(1):12.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Li Q, Chow AB, Mattingly RR. Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther. 2010;332(3):821–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol. 2003;15(6):753–62.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.PubMedGoogle Scholar
  63. 63.
    Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31(2):108–15.PubMedGoogle Scholar
  64. 64.
    Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog. 2013;52(3):167–82.PubMedGoogle Scholar
  65. 65.
    Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P. PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol. 2018;14(2):e1005991.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncol. 2014;10(7):1311–27.PubMedGoogle Scholar
  67. 67.
    Zschenker O, Streichert T, Hehlgans S, Cordes N. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One. 2012;7(4):e34279.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Myungjin Lee J, Mhawech-Fauceglia P, Lee N, Cristina Parsanian L, Gail Lin Y, Andrew Gayther S, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Investig. 2013;93:528.Google Scholar
  69. 69.
    Eke I, Cordes N. Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol. 2011;99(3):271–8.PubMedGoogle Scholar
  70. 70.
    Schmeichel KL, Weaver VM, Bissell MJ. Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J Mammary Gland Biol Neoplasia. 1998;3(2):201–13.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gangadhara S, Smith C, Barrett-Lee P, Hiscox S. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response. BMC Cancer. 2016;16(1):345.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Moin K, Sameni M, Victor BC, Rothberg JM, Mattingly RR, Sloane BF. Chapter ten - 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. In: Conn PM, editor. Methods in enzymology, vol. 506. San Diego: Academic Press; 2012. p. 175–94.Google Scholar
  73. 73.
    Ji K, Zhao Z, Moin K, Xu Y, Sloane BF. Abstract B65: live-cell imaging of 3D/4D parallel co-cultures of breast carcinoma cells and breast fibroblasts in tissue architecture and microenvironment engineering (TAME) chambers. Mol Cancer Res. 2016;14(2 Supplement):B65.Google Scholar
  74. 74.
    Becker H. Mind the gap! Lab Chip. 2010;10(3):271–3.PubMedGoogle Scholar
  75. 75.
    Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016;4(12):12.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Ravi M, Ramesh A, Pattabhi A. Contributions of 3D cell cultures for cancer research. J Cell Physiol. 2017;232(10):2679–97.PubMedGoogle Scholar
  77. 77.
    Maddaly R, Subramaniyan A, Balasubramanian H. Cancer cytokines and the relevance of 3D cultures for studying those implicated in human cancers. J Cell Biochem. 2017;118(9):2544–58.PubMedGoogle Scholar
  78. 78.
    Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol Lett. 2017;14(6):6999–7010.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99(8):616–27.PubMedGoogle Scholar
  80. 80.
    Farnie G, Willan PM, Clarke RB, Bundred NJ. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLoS One. 2013;8(2):e56840.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Farnie G, Johnson RL, Williams KE, Clarke RB, Bundred NJ. Lapatinib inhibits stem/progenitor proliferation in preclinical in vitro models of ductal carcinoma in situ (DCIS). Cell Cycle. 2014;13(3):418–25.PubMedGoogle Scholar
  82. 82.
    Williams KE, Bundred NJ, Landberg G, Clarke RB, Farnie G. Focal adhesion kinase and Wnt signaling regulate human ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem Cells. 2015;33(2):327–41.PubMedGoogle Scholar
  83. 83.
    Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One. 2013;8(10):e77281.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH. Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003;5(5):R129–35.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J. 2014;107(11):2546–58.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17(9):1109–U116.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Decitre M, Gleyzal C, Raccurt M, Peyrol S, Aubert-Foucher E, Csiszar K, et al. Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis and in the early stromal reaction of ductal breast carcinomas. 1998. 143–51 p.Google Scholar
  89. 89.
    Zhao XK, Cheng Y, Liang Cheng M, Yu L, Mu M, Li H, et al. Focal adhesion kinase regulates fibroblast migration via integrin beta-1 and plays a central role in fibrosis. Sci Rep. 2016;6:19276.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2011;18(1):148–52.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, et al. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res. 2000;6(6):2417–23.PubMedGoogle Scholar
  92. 92.
    Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, et al. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci U S A. 2017;114(5):1033–8.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S, et al. Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol. 2010;4(4):357–68.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Knudsen ES, Ertel A, Davicioni E, Kline J, Schwartz GF, Witkiewicz AK. Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia. Breast Cancer Res Treat. 2012;133(3):1009–24.PubMedGoogle Scholar
  96. 96.
    Burkhardt L, Grob TJ, Hermann I, Burandt E, Choschzick M, Janicke F, et al. Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2010;123(3):757–65.PubMedGoogle Scholar
  97. 97.
    Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell. 2008;13(5):394–406.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Petridis C, Brook MN, Shah V, Kohut K, Gorman P, Caneppele M, et al. Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Res. 2016;18(1):22.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100(10):5974–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006;66(10):5278–86.PubMedGoogle Scholar
  101. 101.
    Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14(7):1956–65.PubMedGoogle Scholar
  102. 102.
    Hernandez L, Wilkerson PM, Lambros MB, Campion-Flora A, Rodrigues DN, Gauthier A, et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol. 2012;227(1):42–52.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Luzzi V, Holtschlag V, Watson MA. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol. 2001;158(6):2005–10.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.PubMedGoogle Scholar
  105. 105.
    Kaur H, Mao S, Shah S, Gorski DH, Krawetz SA, Sloane BF, et al. Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Rev Mol Diagn. 2013;13(2):151–65.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Calaf GM, Echiburu-Chau C, Zhao YL, Hei TK. BigH3 protein expression as a marker for breast cancer. Int J Mol Med. 2008;21(5):561–8.PubMedGoogle Scholar
  107. 107.
    Wang N, Eckert KA, Zomorrodi AR, Xin P, Pan W, Shearer DA, et al. Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways. PLoS One. 2012;7(6):e39446.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Castellana B, Escuin D, Peiro G, Garcia-Valdecasas B, Vazquez T, Pons C, et al. ASPN and GJB2 are implicated in the mechanisms of invasion of ductal breast carcinomas. J Cancer. 2012;3:175–83.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Shah S, Brock EJ, Jackson RM, Ji K, Boerner JL, Sloane BF, Mattingly RR. Downregulation of Rap1Gap: A switch from DCIS to invasive breast carcinoma via ERK/MAPK activation. Neoplasia. 2018; (in press).Google Scholar
  110. 110.
    Schnitt SJ. The transition from ductal carcinoma in situ to invasive breast cancer: the other side of the coin. Breast Cancer Res. 2009;11(1):101.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW, Friedl A, et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb). 2011;3(4):439–50.Google Scholar
  112. 112.
    Choi Y, Hyun E, Seo J, Blundell C, Kim HC, Lee E, et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip. 2015;15(16):3350–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.PubMedGoogle Scholar
  114. 114.
    Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Chalasani A, Ji K, Sameni M, Mazumder SH, Xu Y, Moin K, et al. Live-cell imaging of protease activity: assays to screen therapeutic approaches. Methods Mol Biol. 2017;1574:215–25.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Sameni M, Tovar EA, Essenburg CJ, Chalasani A, Linklater ES, Borgman A, et al. Cabozantinib (XL184) inhibits growth and invasion of preclinical TNBC models. Clin Cancer Res. 2016;22(4):923–34.PubMedGoogle Scholar
  117. 117.
    Sameni M, Anbalagan A, Olive MB, Moin K, Mattingly RR, Sloane BF. MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression. J Vis Exp. 2012; (60):e3661.Google Scholar
  118. 118.
    Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial–stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci. 2009;106(9):3372.PubMedGoogle Scholar
  119. 119.
    Sternlicht MD, Barsky SH. The myoepithelial defense: a host defense against cancer. Med Hypotheses. 1997;48(1):37–46.PubMedGoogle Scholar
  120. 120.
    Xiao G, Liu YE, Gentz R, Sang QA, Ni J, Goldberg ID, et al. Suppression of breast cancer growth and metastasis by a serpin myoepithelium-derived serine proteinase inhibitor expressed in the mammary myoepithelial cells. Proc Natl Acad Sci U S A. 1999;96(7):3700–5.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Barsky SH, Karlin NJ. Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia. 2005;10(3):249–60.PubMedGoogle Scholar
  122. 122.
    Pandey PR, Saidou J, Watabe K. Role of myoepithelial cells in breast tumor progression. Front Biosci. 2010;15:226–36.PubMedCentralGoogle Scholar
  123. 123.
    Duivenvoorden HM, Rautela J, Edgington-Mitchell LE, Spurling A, Greening DW, Nowell CJ, et al. Myoepithelial cell-specific expression of stefin a as a suppressor of early breast cancer invasion. J Pathol. 2017;243(4):496–509.PubMedGoogle Scholar
  124. 124.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res. 2012;4(4):376–89.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27.PubMedGoogle Scholar
  128. 128.
    Bohrer LR, Schwertfeger KL. Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol Cancer Res. 2012;10(10):1294–305.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Carron EC, Homra S, Rosenberg J, Coffelt SB, Kittrell F, Zhang Y, et al. Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget. 2017;8(31):50731–46.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh RK. Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Cancer Ther. 2013;12(5):799–808.PubMedGoogle Scholar
  131. 131.
    Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22(1):287–309.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Bischel LL, Sung KE, Jimenez-Torres JA, Mader B, Keely PJ, Beebe DJ. The importance of being a lumen. FASEB J. 2014;28(11):4583–90.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci Rep. 2016;6:34094.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Mattingly RR, Milstein ML, Mirkin BL. Down-regulation of growth factor-stimulated MAP kinase signaling in cytotoxic drug-resistant human neuroblastoma cells. Cell Signal. 2001;13(7):499–505.PubMedGoogle Scholar
  135. 135.
    Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5(5):849–62.PubMedGoogle Scholar
  136. 136.
    Ji K, Heyza J, Cavallo-Medved D, Sloane BF. Pathomimetic cancer avatars for live-cell imaging of protease activity. Biochimie. 2016;122:68–76.PubMedGoogle Scholar
  137. 137.
    Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip. 2009;9(15):2132–9.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip. 2012;12(7):1224–37.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication August/2018

Authors and Affiliations

  1. 1.Program in Cancer BiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of PharmacologyWayne State University School of MedicineDetroitUSA
  3. 3.Department of PharmacologyWayne State UniversityDetroitUSA

Personalised recommendations