Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A phase fitted FiniteDiffr process for DiffrntEqutns in chemistry

  • 10 Accesses

Abstract

A new FiniteDiffr (= Finite Difference) process is introduced or the effectual solution of the DiffrntEqutns (= Differential Equations) in Chemistry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

  2. 2.

    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

  3. 3.

    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

  4. 4.

    A.R. Leach, Molecular Modelling: Principles and Applications (Pearson, London, 2001)

  5. 5.

    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford Univ. Press, Oxford, 2011)

  6. 6.

    K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

  7. 7.

    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

  8. 8.

    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)

  9. 9.

    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

  10. 10.

    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)

  11. 11.

    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)

  12. 12.

    B.F. Hu, H. Wang, X.M. Yu, W.H. Yuan, T.W. He, Sparse network embedding for community detection and sign prediction in signed social networks. J. Ambient Intell. Humaniz. Comput. 10(1), 175–186 (2019). https://doi.org/10.1007/s12652-017-0630-1

  13. 13.

    Z.H. Wang, J.J. Xu, X.M. Song, H.X. Zhang, Consensus problem in multi-agent systems under delayed information. Neurocomputing 316, 277–283 (2018). https://doi.org/10.1016/j.neucom.2018.08.002

  14. 14.

    H. Liu, B. Xu, D.J. Lu, G.J. Zhang, A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Appl. Soft Comput. 68, 360–376 (2018). https://doi.org/10.1016/j.asoc.2018.04.015

  15. 15.

    H. Liu, B. Liu, H. Zhang, L. Li, X. Qin, G. Zhan, Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism. Inform. Sci. 436–437, 247–267 (2018)

  16. 16.

    J.X. Zong, L.L. Meng, H.X. Zhang, W.B. Wan, JND-based multiple description image coding. KSII Trans. Internet Inf. Syst. 11(8), 3935–3949 (2017). https://doi.org/10.3837/tiis.2017.08.010

  17. 17.

    L. Zhai, H. Wang, Crowdsensing task assignment based on particle swarm optimization in cognitive radio networks. Wirel. Commun. Mob. Comput. 2017, 9 (2017). https://doi.org/10.1155/2017/4687974. Article ID 4687974

  18. 18.

    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236

  19. 19.

    M.A. Medvedeva, T.E. Simos, An accomplished phase FD process for DEs in chemistry. J. Math. Chem. 57, 2208–2228 (2019). https://doi.org/10.1007/s10910-019-01067-4

  20. 20.

    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

  21. 21.

    Y.-Y. Ma, C.-L. Lin, T.E. Simos, An integrated in phase FD procedure for DiffEqns in chemical problems. J. Math. Chem. 58, 6–28 (2020). https://doi.org/10.1007/s10910-019-01070-9

  22. 22.

    S. Hao, T.E. Simos, A phase fitted FinDiff process for DifEquns in quantum chemistry. J. Math. Chem. 58, 353–381 (2020). https://doi.org/10.1007/s10910-019-01081-6

  23. 23.

    X. Tong, T.E. Simos, A complete in phase FinitDiff procedure for DiffEquns in chemistry. J. Math. Chem. 58, 407–438 (2020). https://doi.org/10.1007/s10910-019-01095-0

  24. 24.

    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56, 170–192 (2018). https://doi.org/10.1007/s10910-017-0787-z

  25. 25.

    M.M. Chawla, S.R. Sharma, Families of 5th order Nyström methods for \(\text{Y}^{\prime \prime }=\text{F}(\text{X},\text{Y})\) and intervals of periodicity. Computing 26(3), 247–256 (1981)

  26. 26.

    J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)

  27. 27.

    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, Hoboken, 1991), pp. 104–107

  28. 28.

    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

  29. 29.

    M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for \(\text{Y}^{\prime \prime }=\text{F}(\text{X},\text{Y})\). Bit 21(4), 455–464 (1981)

  30. 30.

    M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. Bit 23(4), 541–542 (1983)

  31. 31.

    http://www.burtleburtle.net/bob/math/multistep.html

  32. 32.

    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

  33. 33.

    M.M. Chawla, Numerov made explicit has better stability. Bit 24(1), 117–118 (1984)

  34. 34.

    M.M. Chawla, P.S. Rao, High-accuracy P-stable methods for \(\text{Y}^{\prime \prime } =\text{F}(\text{T},\text{Y})\). IMA J. Numer. Anal. 5(2), 215–220 (1985); M.M Chawla, Correction. IMA J. Numer. Anal. 6(2), 252–252 (1986)

  35. 35.

    T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)

  36. 36.

    R.M. Thomas, Phase properties of high order almost P-stable formulae. Bit 24, 225–238 (1984)

  37. 37.

    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

  38. 38.

    M.M. Chawla, A new class of explicit 2-step 4th order methods for \(\text{Y}^{\prime \prime }= \text{F}(\text{T}, \text{Y})\) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)

  39. 39.

    M.M. Chawla, B. Neta, Families of 2-step 4th-order p-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)

  40. 40.

    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)

  41. 41.

    M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for \(\text{Y}^{\prime \prime }=\text{F}(\text{T},\text{Y})\). J. Comput. Appl. Math. 16(2), 233–236 (1986)

  42. 42.

    M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for \(\text{Y}^{\prime \prime }=\text{F}(\text{T}, \text{Y})\). J. Comput. Appl. Math. 17(3), 365–368 (1987)

  43. 43.

    M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1–2), 85–100 (1998)

  44. 44.

    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order almost P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)

  45. 45.

    M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Model. 29(2), 63–72 (1999)

  46. 46.

    J.P. Coleman, Numerical-methods for \(\text{Y}^{\prime \prime }=\text{F}(\text{X},\text{Y})\) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)

  47. 47.

    J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for \(\text{Y}^{\prime \prime } = \text{F}(\text{X}, \text{Y})\). J. Comput. Appl. Math. 44(1), 95–114 (1992)

  48. 48.

    J.P. Coleman, L.Gr. Ixaru, P-stability and exponential-fitting methods for \(\text{Y}^{\prime \prime }=\text{F}(\text{X}, \text{Y})\). IMA J. Numer. Anal. 16(2), 179–199 (1996)

  49. 49.

    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \(\text{Y}^{\prime \prime } = \text{F}(\text{X}, \text{Y})\). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)

  50. 50.

    L.Gr. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)

  51. 51.

    L.Gr. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)

  52. 52.

    L.Gr. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)

  53. 53.

    L.Gr. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4: a fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)

  54. 54.

    L.Gr. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)

  55. 55.

    L.Gr. Ixaru, M. Rizea, Four step methods for \(\text{Y}^{\prime \prime }=\text{F}(\text{X},\text{Y})\). J. Comput. Appl. Math. 79(1), 87–99 (1997)

  56. 56.

    M. Van Daele, G. Vanden Berghe, H. De Meyer, L.Gr. Ixaru, Exponential-fitted four-step methods for \(\text{Y} ^{\prime \prime }=\text{F}(\text{X}, \text{Y})\). Int. J. Comput. Math. 66(3–4), 299–309 (1998)

  57. 57.

    L.Gr. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(\text{Y}^{\prime \prime } = \text{F}(\text{X}, \text{Y})\). J. Comput. Appl. Math. 106(1), 87–98 (1999)

  58. 58.

    L.Gr. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)

  59. 59.

    L.Gr. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)

  60. 60.

    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)

  61. 61.

    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710–1731 (2019)

  62. 62.

    J. Lv, T.E. Simos, A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems. J. Math. Chem 57(8), 1983–2006 (2019)

  63. 63.

    X. Zhang, T.E. Simos, A multiple stage absolute in phase scheme for chemistry problems. J. Math. Chem. 57(9), 2049–2074 (2019)

  64. 64.

    J. Qiu, J. Huang, T.E. Simos, A perfect in phase FD algorithm for problems in quantum chemistry. J. Math. Chem. 57(9), 2019–2048 (2019)

  65. 65.

    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem 53(10), 2191–2213 (2015)

  66. 66.

    L.Gr. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

  67. 67.

    L.Gr. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

  68. 68.

    L.Gr. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

  69. 69.

    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

  70. 70.

    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

  71. 71.

    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

  72. 72.

    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

  73. 73.

    M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

  74. 74.

    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

  75. 75.

    M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)

  76. 76.

    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

  77. 77.

    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

  78. 78.

    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

  79. 79.

    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

  80. 80.

    M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)

  81. 81.

    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

  82. 82.

    L.Gr. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)

  83. 83.

    A.D. Raptis, J.R. Cash, Exponential and Bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)

  84. 84.

    C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)

  85. 85.

    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

  86. 86.

    A.D. Raptis, Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

  87. 87.

    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

  88. 88.

    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

  89. 89.

    J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)

  90. 90.

    A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)

  91. 91.

    A.D. Raptis, 2-Step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)

  92. 92.

    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)

  93. 93.

    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{Y}^{iv}+\text{F}{.}\text{Y}=\text{ G }\). Computing 24(2–3), 241–250 (1980)

  94. 94.

    H. Van De Vyver, A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)

  95. 95.

    H. Van De Vyver, On the generation of P-stable exponentially fitted Runge–Kutta–Nyström methods by exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)

  96. 96.

    M. Van Daele, G. Vanden Berghe, P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)

  97. 97.

    M. Van DAELE, G. Vanden BERGHE, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)

  98. 98.

    Y. Fang, X. Wu, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)

  99. 99.

    G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)

  100. 100.

    D. Hollevoet, M. Van Daele, G. Vanden Berghe, The optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)

  101. 101.

    J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)

  102. 102.

    J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge–Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)

  103. 103.

    J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)

  104. 104.

    J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)

  105. 105.

    J.M. Franco, I. Gomez, Symplectic explicit methods of Runge–Kutta–Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)

  106. 106.

    J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge–Kutta–Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)

  107. 107.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)

  108. 108.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)

  109. 109.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)

  110. 110.

    J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)

  111. 111.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)

  112. 112.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)

  113. 113.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)

  114. 114.

    J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)

  115. 115.

    J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)

  116. 116.

    J.M. Franco, Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

  117. 117.

    J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)

  118. 118.

    X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

  119. 119.

    A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)

  120. 120.

    L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

  121. 121.

    F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)

  122. 122.

    A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)

  123. 123.

    A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)

  124. 124.

    H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663–675 (2006)

  125. 125.

    H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)

  126. 126.

    Y. Fang, X. Wu, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

  127. 127.

    B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)

  128. 128.

    H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(\text{Y}^{\prime \prime } = \text{F} (\text{X}, \text{Y})\). J. Comput. Appl. Math. 209(1), 33–53 (2007)

  129. 129.

    H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711–732 (2008)

  130. 130.

    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)

  131. 131.

    A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

  132. 132.

    F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. 2011, 407151 (2011)

  133. 133.

    H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)

  134. 134.

    Z. Wang, D. Zhao, Y. Dai, D. Wu, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)

  135. 135.

    M. Van Daele, G. Vanden Berghe, H. De Meyer, Properties and implementation of \(\rho \)-Adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)

  136. 136.

    J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)

  137. 137.

    Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)

  138. 138.

    Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)

  139. 139.

    J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)

  140. 140.

    J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)

  141. 141.

    J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)

  142. 142.

    C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)

  143. 143.

    C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)

  144. 144.

    H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)

  145. 145.

    J.P. Coleman, L.Gr. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)

  146. 146.

    J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)

  147. 147.

    J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF–Runge–Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

  148. 148.

    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)

  149. 149.

    Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)

  150. 150.

    C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419–431 (2007)

  151. 151.

    J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486–491 (2008)

  152. 152.

    H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)

  153. 153.

    H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5), 056705 (2009)

  154. 154.

    Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)

Download references

Author information

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 79 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Simos, T.E. A phase fitted FiniteDiffr process for DiffrntEqutns in chemistry. J Math Chem (2020). https://doi.org/10.1007/s10910-020-01104-7

Download citation

Keywords

  • Phase-lag
  • Derivative of the phase-lag
  • Initial value problems
  • Oscillating solution
  • Symmetric
  • Hybrid
  • Multistep
  • Schrödinger equation

Mathematics Subject Classification

  • 65L05