Advertisement

A phase fitted FinDiff process for DifEquns in quantum chemistry

  • Sheng Hao
  • T. E. SimosEmail author
Original Paper
  • 16 Downloads

Abstract

A newly FinDiff (\(=\) Finite Difference) process is developed for the productive application on the DifEquns (\(=\) Differential Equations) in Chemistry.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics Subject Classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

References

  1. 1.
    M.M. Chawla, S.R. Sharma, Families of 5th order Nyström methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X, } \text{ Y })\) and intervals of periodicity. Computing 26(3), 247–256 (1981)CrossRefGoogle Scholar
  2. 2.
    J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)CrossRefGoogle Scholar
  3. 3.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, the Initial Value Problem (Wiley, New York, 1991), pp. 104–107Google Scholar
  4. 4.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)CrossRefGoogle Scholar
  5. 5.
    M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for Y”=F(X, Y). Bit 21(4), 455–464 (1981)CrossRefGoogle Scholar
  6. 6.
    M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. Bit 23(4), 541–542 (1983)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)CrossRefGoogle Scholar
  9. 9.
    M.M. Chawla, Numerov made explicit has better stability. Bit 24(1), 117–118 (1984)CrossRefGoogle Scholar
  10. 10.
    M.M. Chawla, P.S. Rao, High-accuracy P-stable methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T,Y })\), Ima J. Numer. Anal. 5(2), 215–220 (1985) and M.M Chawla, Correction, Ima J. Numer. Anal. 6(2) 252–252 (1986)Google Scholar
  11. 11.
    T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)CrossRefGoogle Scholar
  12. 12.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)CrossRefGoogle Scholar
  13. 13.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)CrossRefGoogle Scholar
  14. 14.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  15. 15.
    M.M. Chawla, A new class of explicit 2-step 4th order methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T, } \text{ Y })\) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)CrossRefGoogle Scholar
  16. 16.
    M.M. Chawla, B. Neta, Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)CrossRefGoogle Scholar
  17. 17.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)CrossRefGoogle Scholar
  18. 18.
    M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ T, } \text{ Y })\). J. Comput. Appl. Math. 16(2), 233–236 (1986)CrossRefGoogle Scholar
  19. 19.
    M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ T, } \text{ Y })\). J. Comput. Appl. Math. 17(3), 365–368 (1987)CrossRefGoogle Scholar
  20. 20.
    M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1–2), 85–100 (1998)CrossRefGoogle Scholar
  21. 21.
    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “almost” P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)CrossRefGoogle Scholar
  22. 22.
    M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Model. 29(2), 63–72 (1999)CrossRefGoogle Scholar
  23. 23.
    J.P. Coleman, Numerical-methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X, } \text{ Y })\) via rational-approximations for the cosine. Ima J. Numer. Anal. 9(2), 145–165 (1989)CrossRefGoogle Scholar
  24. 24.
    J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X, } \text{ Y })\). J. Comput. Appl. Math. 44(1), 95–114 (1992)CrossRefGoogle Scholar
  25. 25.
    J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X, } \text{ Y })\). Ima J. Numer. Anal. 16(2), 179–199 (1996)CrossRefGoogle Scholar
  26. 26.
    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \(\text{ Y } ^{\prime \prime } = \text{ F }(\text{ X, } \text{ Y })\). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)CrossRefGoogle Scholar
  27. 27.
    L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)CrossRefGoogle Scholar
  28. 28.
    L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)CrossRefGoogle Scholar
  29. 29.
    L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)CrossRefGoogle Scholar
  30. 30.
    L.G. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4—a Fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)CrossRefGoogle Scholar
  31. 31.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)CrossRefGoogle Scholar
  32. 32.
    L.G. Ixaru, M. Rizea, Four step methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X,Y })\). J. Comput. Appl. Math. 79(1), 87–99 (1997)CrossRefGoogle Scholar
  33. 33.
    M. Van Daele, G. Vanden Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for \(\text{ Y } ^{\prime \prime }=\text{ F }(\text{ X,Y })\). Int. J. Comput. Math. 66(3–4), 299–309 (1998)CrossRefGoogle Scholar
  34. 34.
    L.G. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(\text{ Y } ^{\prime \prime } = \text{ F }(\text{ X, } \text{ Y })\). J. Comput. Appl. Math. 106(1), 87–98 (1999)CrossRefGoogle Scholar
  35. 35.
    L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)CrossRefGoogle Scholar
  37. 37.
    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)CrossRefGoogle Scholar
  38. 38.
    M.A. Medvedeva, T.E. Simos, An accomplished phase FD process for DEs in chemistry, J. Math. Chem. (in press)Google Scholar
  39. 39.
    Y.-Y. MA, C.-L. Lin, T.E. Simos, An integrated in phase FD procedure for diffeqns in chemical problems, J. Math. Chem. (to appear)Google Scholar
  40. 40.
    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710–1731 (2019)CrossRefGoogle Scholar
  41. 41.
    J. Lv, T.E. Simos, A Runge-Kutta type crowded in phase algorithm for quantum chemistry problems. J. Math. Chem. 57(8), 1983–2006 (2019)CrossRefGoogle Scholar
  42. 42.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)CrossRefGoogle Scholar
  43. 43.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  44. 44.
    L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  45. 45.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  46. 46.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  47. 47.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  48. 48.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)CrossRefGoogle Scholar
  49. 49.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  50. 50.
    M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)CrossRefGoogle Scholar
  51. 51.
    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)Google Scholar
  52. 52.
    M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)CrossRefGoogle Scholar
  53. 53.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)CrossRefGoogle Scholar
  54. 54.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)CrossRefGoogle Scholar
  55. 55.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)CrossRefGoogle Scholar
  56. 56.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)CrossRefGoogle Scholar
  57. 57.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)CrossRefGoogle Scholar
  58. 58.
    M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)CrossRefGoogle Scholar
  59. 59.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  60. 60.
    K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)CrossRefGoogle Scholar
  61. 61.
    L.G. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)CrossRefGoogle Scholar
  62. 62.
    A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)CrossRefGoogle Scholar
  63. 63.
    C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)CrossRefGoogle Scholar
  64. 64.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)CrossRefGoogle Scholar
  65. 65.
    A.D. Raptis, Exponential multisteo methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)Google Scholar
  66. 66.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)CrossRefGoogle Scholar
  67. 67.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)CrossRefGoogle Scholar
  68. 68.
    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties, J. Math. Chem. (in press)Google Scholar
  69. 69.
    J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)CrossRefGoogle Scholar
  70. 70.
    A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)CrossRefGoogle Scholar
  71. 71.
    A.D. Raptis, 2-Step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)Google Scholar
  72. 72.
    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)CrossRefGoogle Scholar
  73. 73.
    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{ Y }^{iv}+\text{ F.Y }=\text{ G }\). Computing 24(2–3), 241–250 (1980)CrossRefGoogle Scholar
  74. 74.
    H. Van De Vyver, A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)CrossRefGoogle Scholar
  75. 75.
    H. Van De Vyver, On the generation of P-stable exponentially fitted Runge–Kutta–Nyström methods by exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)CrossRefGoogle Scholar
  76. 76.
    M. Van Daele, G. Vanden Berghe, P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)CrossRefGoogle Scholar
  77. 77.
    M. Van Daele, G. Vanden Berghe, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)CrossRefGoogle Scholar
  78. 78.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)CrossRefGoogle Scholar
  79. 79.
    G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)CrossRefGoogle Scholar
  80. 80.
    D. Hollevoet, M. Van Daele, G. Vanden Berghe, The optimal exponentially-fitted numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)CrossRefGoogle Scholar
  81. 81.
    J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)Google Scholar
  82. 82.
    J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge–Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)Google Scholar
  83. 83.
    J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)CrossRefGoogle Scholar
  84. 84.
    J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)Google Scholar
  85. 85.
    J.M. Franco, I. Gomez, Symplectic explicit methods of Runge–Kutta–Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)CrossRefGoogle Scholar
  86. 86.
    J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge–Kutta–Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)CrossRefGoogle Scholar
  87. 87.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)CrossRefGoogle Scholar
  88. 88.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)CrossRefGoogle Scholar
  89. 89.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)CrossRefGoogle Scholar
  90. 90.
    J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)CrossRefGoogle Scholar
  91. 91.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)CrossRefGoogle Scholar
  92. 92.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)CrossRefGoogle Scholar
  93. 93.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)CrossRefGoogle Scholar
  94. 94.
    J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)CrossRefGoogle Scholar
  95. 95.
    J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)CrossRefGoogle Scholar
  96. 96.
    J.M. Franco, Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)CrossRefGoogle Scholar
  97. 97.
    J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)CrossRefGoogle Scholar
  98. 98.
    X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)CrossRefGoogle Scholar
  99. 99.
    A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)CrossRefGoogle Scholar
  100. 100.
    L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)Google Scholar
  101. 101.
    F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)Google Scholar
  102. 102.
    A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)CrossRefGoogle Scholar
  103. 103.
    A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)CrossRefGoogle Scholar
  104. 104.
    H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663–675 (2006)CrossRefGoogle Scholar
  105. 105.
    H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)CrossRefGoogle Scholar
  106. 106.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)Google Scholar
  107. 107.
    B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)CrossRefGoogle Scholar
  108. 108.
    H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for y” = f (x, y). J. Comput. Appl. Math. 209(1), 33–53 (2007)CrossRefGoogle Scholar
  109. 109.
    H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711–732 (2008)Google Scholar
  110. 110.
    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)CrossRefGoogle Scholar
  111. 111.
    A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)CrossRefGoogle Scholar
  112. 112.
    F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations, J. Appl. Math. 2011 Article ID 407151 (2011)Google Scholar
  113. 113.
    H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)CrossRefGoogle Scholar
  114. 114.
    Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)CrossRefGoogle Scholar
  115. 115.
    M. Van Daele, G. Vanden Berghe, H. De Meyer, Properties and implementation of \(\rho \)-adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)CrossRefGoogle Scholar
  116. 116.
    J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)CrossRefGoogle Scholar
  117. 117.
    Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)CrossRefGoogle Scholar
  118. 118.
    Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)CrossRefGoogle Scholar
  119. 119.
    J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)CrossRefGoogle Scholar
  120. 120.
    J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)CrossRefGoogle Scholar
  121. 121.
    J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)CrossRefGoogle Scholar
  122. 122.
    C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)CrossRefGoogle Scholar
  123. 123.
    C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)CrossRefGoogle Scholar
  124. 124.
    H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)CrossRefGoogle Scholar
  125. 125.
    J.P. Coleman, L.G. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)CrossRefGoogle Scholar
  126. 126.
    J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)CrossRefGoogle Scholar
  127. 127.
    J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge–Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)CrossRefGoogle Scholar
  128. 128.
    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)CrossRefGoogle Scholar
  129. 129.
    Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)CrossRefGoogle Scholar
  130. 130.
    C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419–431 (2007)CrossRefGoogle Scholar
  131. 131.
    J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486–491 (2008)CrossRefGoogle Scholar
  132. 132.
    H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)CrossRefGoogle Scholar
  133. 133.
    H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization, Phys. Rev. E 79(5) Article ID 056705 (2009)Google Scholar
  134. 134.
    Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)CrossRefGoogle Scholar
  135. 135.
    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)CrossRefGoogle Scholar
  136. 136.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  137. 137.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  138. 138.
    A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)Google Scholar
  139. 139.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford Univ. Press, Oxford, 2011)Google Scholar
  140. 140.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations, in AIP Conference Proceedings, vol. 738 (2016), p. 480004Google Scholar
  141. 141.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow, in AIP Conference Proceedings, vol. 1648 (2015), p. 850033Google Scholar
  142. 142.
    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)Google Scholar
  143. 143.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)Google Scholar
  144. 144.
    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chang’an UniversityXi’anPeople’s Republic of China
  2. 2.Highway Monitoring and Response CenterMinistry of Transport of the P.R. ChinaBeijingPeople’s Republic of China
  3. 3.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Data Recovery Key Laboratory of Sichuan ProvinceNeijiang Normal UniversityNeijiangPeople’s Republic of China
  5. 5.Group of Modern Computational MethodsUral Federal UniversityEkaterinburgRussian Federation
  6. 6.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  7. 7.AthensGreece

Personalised recommendations