Advertisement

Computational combinatorics of hyperplane colorings of 6D-hypercube for all irreducible representations and applications

  • Krishnan BalasubramanianEmail author
Original Paper
  • 13 Downloads

Abstract

Computational generating function techniques are outlined for combinatorics of colorings of all hyperplanes of the 6D-hypercube for 65 irreducible representations of the 6D-hyperoctahedral group isomorphic to the wreath product S6[S2] group of order 46,080. The computational techniques are inspired by a number of physico-chemical and biological applications to molecular chirality, molecular clusters, isomerization reaction graphs, relativistic effects, massively-large data sets, visualization, and genetic regulatory networks. Computational techniques are comprised of computing the generalized character cycle indices of 65 irreducible representations for all hyperplanes of the 6D-hypercube using the Möbius inversion technique followed by the construction of polynomial generators for different cycle types under the hyperoctahedral group action for all six types of hyperplanes of the 6D-hypercube. Subsequently, multinomial generating functions for colorings of all (6-q)-hyperplanes of the 6D-hypercube are constructed for q = 1 through 6. We have presented tables thus computed for the combinatorics for colorings of six hyperplanes of 6D-hypercube for 65 irreducible representations and outline applications to chemical and biological sciences.

Keywords

Colorings of hyperplanes of 6D-hypercubes Computation of character cycle indices for hyperplanes of 6D-cube Computational combinatorics of the 6D-hypercube Chemical and biological applications 

Notes

References

  1. 1.
    R. Carbó-Dorca, N-Dimensional Boolean hypercubes and the Goldbach conjecture. J. Math. Chem. 54, 1213–1220 (2016).  https://doi.org/10.1007/s10910-016-0628-5 CrossRefGoogle Scholar
  2. 2.
    R. Carbó-Dorca, DNA unnatural base pairs and 6D-hypercubes. J. Math. Chem. 56, 1353–1536 (2018).  https://doi.org/10.1007/s10910-018-0866-9 CrossRefGoogle Scholar
  3. 3.
    R. Carbó-Dorca, About Erdȍs discrepancy conjecture. J. Math. Chem. 54, 657 (2016).  https://doi.org/10.1007/s10910-015-0585-4 CrossRefGoogle Scholar
  4. 4.
    R. Carbó-Dorca, Boolean hypercubes and the structure of vector spaces. J. Math. Sci. Model. 1, 1–14 (2018)Google Scholar
  5. 5.
    K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications. J. Math. Sci. Model. 1, 158–180 (2018)Google Scholar
  6. 6.
    R. Carbó-Dorca, Boolean hypercubes as time representation holders. J. Math. Chem. 55, 1349–1352 (2018).  https://doi.org/10.1007/s10910-018-0865-X CrossRefGoogle Scholar
  7. 7.
    A.A. Gowen, C.P. O’Donnella, P.J. Cullenb, S.E.J. Bell, Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur. J. Pharm. Biopharm. 69, 10–22 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    P.G. Mezey, Similarity Analysis in two and three dimensions using lattice animals and polycubes. J. Math. Chem. 11, 27–45 (1992)CrossRefGoogle Scholar
  9. 9.
    A. Fralov, E. Jako, P.G. Mezey, Logical models for molecular shapes and families. J. Math. Chem. 30, 389–409 (2001)CrossRefGoogle Scholar
  10. 10.
    P.G. Mezey, Some dimension problems in molecular databases. J. Math. Chem. 45, 1–6 (2009)CrossRefGoogle Scholar
  11. 11.
    P.G. Mezey, Shape similarity measures for molecular bodies: a three-dimensional topological approach in quantitative shape-activity relation. J. Chem. Inf. Comput. Sci. 32, 650 (1992)CrossRefGoogle Scholar
  12. 12.
    K. Balasubramanian, Combinatorial multinomial generators for colorings of 4D-hypercubes and their applications. J. Math. Chem. 56, 2707–2723 (2018)CrossRefGoogle Scholar
  13. 13.
    W. K. Clifford, Mathematical Papers. Editor: R. Tucker, R. McMillan & Co, London, 1882, Introduction by H. J. Stephen Smith, Reprinted by Chelsea, NY 1968Google Scholar
  14. 14.
    W.K. Clifford, On the types of compound statement involving four classes, in Proceedings of Manchester Literary and Philosophical Society (1877), pp. 88–101Google Scholar
  15. 15.
    G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds (Springer, New York, 1987)CrossRefGoogle Scholar
  16. 16.
    G. Pólya, Kombinatorische Anzahlbestimmugen für Gruppen, Graphen, und Chemische Verbindugen. Acta. Math. 68, 145–254 (1937)CrossRefGoogle Scholar
  17. 17.
    J.H. Redfield, The theory of group reduced distributions. Am. J. Math. 49, 433 (1927)CrossRefGoogle Scholar
  18. 18.
    G. Pólya, Sur les types des propositions composées. J. Symb. Logic 5, 98–103 (1940)CrossRefGoogle Scholar
  19. 19.
    M.A. Harrison, R.G. High, On the cycle index of a product of permutation group. J. Comb. Theory 4, 277–299 (1968)CrossRefGoogle Scholar
  20. 20.
    D.C. Banks, S.A. Linton, P.K. Stockmeyer, Counting cases in substitope algorithms. IEEE Trans. Vis. Comput. Graph. 10, 371–384 (2004)PubMedCrossRefGoogle Scholar
  21. 21.
    D.C. Banks, P.K. Stockmeyer, DeBruijn counting for visualization algorithms, in Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, ed. by T. Möller, B. Hamann, R.D. Russell (Springer, Berlin, 2009), pp. 69–88Google Scholar
  22. 22.
    W.Y.C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6, 353–362 (1993)CrossRefGoogle Scholar
  23. 23.
    G.M. Ziegler, Lectures on Polytopes. Graduate Texts in Mathematics, vol. 52 (Springer, Berlin, 1994)Google Scholar
  24. 24.
    P.W.H. Lemmis, Pólya Theory of hypercubes. Geom. Dedicata 64, 145–155 (1997)CrossRefGoogle Scholar
  25. 25.
    P. Bhaniramka, R. Wenger, R. Crawfis, Isosurfacing in higher Dimension. Proc. IEEE Vis. 2000, 267–270 (2000)Google Scholar
  26. 26.
    O. Aichholzer, Extremal properties of 0/1-polytopes of dimension 5, in Polytopes—Combinatorics and Computation, ed. by G. Ziegler, G. Kalai (Birkhäuser, Berlin, 2000), pp. 11–130Google Scholar
  27. 27.
    R. Perez-Aguila, Enumerating the configurations in the n-dimensional polytopes through Pólya’s counting and A concise representation, in 2006, Third International Conference on Electrical and Electronics Engineering (IEEE, 2006), pp. 1–4Google Scholar
  28. 28.
    M. Liu, K.E. Bassler, Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes. J. Phys. A Math. Theor. 44, 045101 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Perez-Aguila, Towards a new approach for volume datasets based on orthogonal polytopes in four-dimensional color space. Eng. Lett. 18(4), 326 (2010)Google Scholar
  30. 30.
    W.Y.C. Chen, P.L. Guo, Equivalence classes of full-dimensional 0/1-polytopes with many vertices (2011). https://arxiv.org/pdf/1101.0410.pdf
  31. 31.
    N.G. de Bruijn, Color patterns that are invariant under permutation of colors. J. Comb. Theory 2, 418–421 (1967)CrossRefGoogle Scholar
  32. 32.
    N.G. de Bruijn, Enumeration of tree shaped molecules, in Recent Progress in Combinatorics, ed. by W.D. Tutte (Academic, New York, 1969), pp. 59–68Google Scholar
  33. 33.
    F. Harary, E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1973)Google Scholar
  34. 34.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)Google Scholar
  35. 35.
    A.T. Balaban, Enumerating isomers, in Chemical Graph Theory, ed. by D. Bonchev, D.H. Rouvray (Gordon & Beach Publishers, New York, 1991)Google Scholar
  36. 36.
    C.J.O. Reichhardt, K.E. Bassler, Canalization and symmetry in Boolean models for genetic regulatory networks. J. Phys. A Math. Theor. 40, 4339 (2007)CrossRefGoogle Scholar
  37. 37.
    K. Balasubramanian, Symmetry groups of nonrigid molecules as generalized wreath-products and their representations. J. Chem. Phys. 72, 665–677 (1980)CrossRefGoogle Scholar
  38. 38.
    K. Balasubramanian, Relativistic double group spinor representations of nonrigid molecules. J. Chem. Phys. 120, 5524–5535 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    K. Balasubramanian, Combinatorial enumeration of ragas (scales of integer sequences) of Indian music. J. Integer Seq.5 (2002) 02.2.6Google Scholar
  40. 40.
    K. Balasubramanian, Applications of combinatorics and graph theory to quantum chemistry and spectroscopy. Chem. Rev. 85, 599–618 (1985)CrossRefGoogle Scholar
  41. 41.
    K. Balasubramanian, Generalization of De Bruijn’s extension of Pólya’s theorem to all characters. J. Math. Chem. 14, 113–120 (1993)CrossRefGoogle Scholar
  42. 42.
    K. Balasubramanian, Generalization of the Harary–Palmer Power Group theorem to all irreducible representations. J. Math. Chem. 52, 703–728 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Wallace, Spontaneous symmetry breaking in a non-rigid molecule approach to intrinsically disordered proteins. Mol. BioSyst. 8(1), 374–377 (2012)PubMedCrossRefGoogle Scholar
  44. 44.
    R. Wallace, Tools for the future: hidden symmetries, in Computational Psychiatry - A Systems Biology Approach to the Epigenetics of Mental Disorders, ed. by R. Wallace (Springer, Cham, 2017), pp. 153–165CrossRefGoogle Scholar
  45. 45.
    M.R. Darafsheh, Y. Farjami, A.R. Ashrafi, Computing the full non-rigid group of tetranitrocubane and octanitrocubane using wreath product. MATCH Commun. Math. Comput. Chem. 54, 53 (2005)Google Scholar
  46. 46.
    R. Foote, G. Mirchandani, D. Rockmore, A two-dimensional wreath product transforms. J. Symb. Comput. 37, 187–207 (2004)CrossRefGoogle Scholar
  47. 47.
    K. Balasubramanian, A generalized wreath product method for the enumeration of stereo and position isomers of polysubstituted organic compounds. Theor. Chim. Acta 51, 37–51 (1979)CrossRefGoogle Scholar
  48. 48.
    K. Balasubramanian, Symmetry simplifications of space types in configuration–interaction induced by orbital degeneracy. Int. J. Quantum Chem. 20, 1255–1271 (1981)CrossRefGoogle Scholar
  49. 49.
    K. Balasubramanian, Enumeration of the isomers of the gallium arsenide clusters (GamAsn). Chem. Phys. Lett. 150(1–2), 71–77 (1988)CrossRefGoogle Scholar
  50. 50.
    K. Balasubramanian, Nuclear-spin statistics of C60, C60H60 and C60D60. Chem. Phys. Lett. 183, 292–296 (1991)CrossRefGoogle Scholar
  51. 51.
    K. Balasubramanian, Group theoretical analysis of vibrational modes and rovibronic levels of extended aromatic C48N12azafullerene. Chem. Phys. Lett. 391, 64–68 (2004)CrossRefGoogle Scholar
  52. 52.
    K. Balasubramanian, Group-theory and nuclear-spin statistics of weakly-bound (H2O)N, (NH3)N, (CH4)N, and NH4 +(NH3)N. J. Chem. Phys. 95, 8273–8286 (1991)CrossRefGoogle Scholar
  53. 53.
    K. Balasubramanian, Generators of the character tables of generalized wreath product groups. Theor. Chim. Acta. 78, 31–43 (1990)CrossRefGoogle Scholar
  54. 54.
    X.Y. Liu, K. Balasubramanian, Computer generation of character tables of generalized wreath product groups. J. Comput. Chem. 11, 589–602 (1990)CrossRefGoogle Scholar
  55. 55.
    K. Balasubramanian, Multinomial combinatorial group representations of the octahedral and cubic symmetries. J. Math. Chem. 35, 345–365 (2004)CrossRefGoogle Scholar
  56. 56.
    K. Balasubramanian, Enumeration of internal rotation reaction graphs. Theoret. Chim. Acta 53, 129–146 (1979)CrossRefGoogle Scholar
  57. 57.
    K. Balasubramanian, A method for nuclear-spin statistics in molecular spectroscopy. J. Chem. Phys. 74, 6824–6829 (1981)CrossRefGoogle Scholar
  58. 58.
    K. Balasubramanian, Operator and algebraic methods for NMR spectroscopy. II. NMR projection operators and spin functions. J. Chem. Phys. 7, 6369–6376 (1983)CrossRefGoogle Scholar
  59. 59.
    K. Balasubramanian, M. Randić, The characteristic polynomials of structures with pending bonds. Theoret. Chim. Acta 61, 307–323 (1982)CrossRefGoogle Scholar
  60. 60.
    K. Balasubramanian, Mathematical and computational techniques for drug discovery: promises and developments. Curr. Topics Med. Chem. 19, 1–24 (2019)CrossRefGoogle Scholar
  61. 61.
    H.S.M. Coxeter, Regular Polytopes (Dover Publications, New York, 1973)Google Scholar
  62. 62.
    K. Balasubramanian, Generating functions for the nuclear spin statistics of nonrigid molecules. J. Chem. Phys. 75(9), 4572–4585 (1981)CrossRefGoogle Scholar
  63. 63.
    K. Balasubramanian, Operator and algebraic methods for NMR spectroscopy. I. Generation of NMR spin species. J. Chem. Phys. 78(11), 6358–6368 (1983)CrossRefGoogle Scholar
  64. 64.
    T. Ruen, https://commons.wikimedia.org/wiki/File:5-cube_t024.svgfree. public domain work available to anyone to use for any purpose
  65. 65.
    K. Balasubramanian, Computational multinomial combinatorics for colorings of hyperplanes of hypercubes for all irreducible representations and applications. J. Math. Chem. 57, 655–689 (2019)CrossRefGoogle Scholar
  66. 66.
    K. Balasubramanian, Enumeration of stable stereo and position isomers of polysubstitued alcohols. Ann. N.Y. Acad. Sci. 319, 33–36 (1979)CrossRefGoogle Scholar
  67. 67.
    K. Balasubramanian, Nonrigid group theory, tunneling splittings, and nuclear spin statistics of water pentamer:(H2O)5. J. Phys. Chem. A 108, 5527–5536 (2004)CrossRefGoogle Scholar
  68. 68.
    J.M. Price, M.W. Crofton, Y.T. Lee, Vibrational spectroscopy of the ammoniated ammonium ions NH4 + (NH3) n (n = 1–10). J. Phys. Chem. 95, 2182–2195 (1991)CrossRefGoogle Scholar
  69. 69.
    J.W. Kennedy, M. Gordon, Graph contraction and a generalized Möbius inversion. Ann. N.Y. Acad. Sci. 319, 331–348 (1979)CrossRefGoogle Scholar
  70. 70.
    V. Krishnamurthy, Combinatorics: Theory and Applications (Harwood, New York, 1985)Google Scholar
  71. 71.
    K. Balasubramanian, Group theoretical treatment of Jahn-Teller versus spin-orbit effects on geometries, rovibronic levels and nuclear spin species of bismuth and antimony clusters. Mol. Phys. 107, 797–807 (2009)CrossRefGoogle Scholar
  72. 72.
    K. Balasubramanian, Spectroscopic constants and potential energy curves of tungsten carbide. J. Chem. Phys. 112, 7425–7436 (2000)CrossRefGoogle Scholar
  73. 73.
    K. Balasubramanian, Relativistic Effects in Chemistry, Part A: Theory & Techniques (Wiley-Interscience, New York, 1997)Google Scholar
  74. 74.
    K. Balasubramanian, Relativistic Effects in Chemistry, Part B: Applications (Wiley-Interscience, New York, 1997), p. p547Google Scholar
  75. 75.
    K. Balasubramanian, Relativity and chemical bonding. J. Phys. Chem. 93, 6585–6596 (1989)CrossRefGoogle Scholar
  76. 76.
    K. Balasubramanian, Relativistic calculations of electronic states and potential energy surfaces of Sn3. J. Chem. Phys. 85, 3401–3406 (1996)CrossRefGoogle Scholar
  77. 77.
    K. Balasubramanian, P.Y. Feng, Potential-energy surfaces for Pt2 +H and Pt +H interactions. J. Chem. Phys. 92, 541–550 (1990)CrossRefGoogle Scholar
  78. 78.
    K. Balasubramanian, D.W. Liao, Spectroscopic properties of low-lying electronic states of Rh2. J. Phys. Chem. 93, 3989–3992 (1989)CrossRefGoogle Scholar
  79. 79.
    K. Balasubramanian, Graph theory and the PPP method. J. Math. Chem. 7, 353–362 (1991)CrossRefGoogle Scholar
  80. 80.
    K. Balasubramanian, Nested wreath groups and their applications to phylogeny in biology and Cayley trees in chemistry and physics. J. Math. Chem. 55, 195–222 (2017)CrossRefGoogle Scholar
  81. 81.
    S.C. Basak, D. Mills, M.M. Mumtaz, K. Balasubramanian, Use of topological indices in predicting aryl hydrocarbon receptor binding potency of dibenzofurans: a hierarchical QSAR approach. Indian J. Chem. A. 42A, 1385–1391 (2003)Google Scholar
  82. 82.
    S.C. Basak, G.D. Grunwald, B.D. Gute, K. Balasubramanian, D. Opitz, Use of statistical and neural net approaches in predicting toxicity of chemicals. J Chem. Inf. Comput. Sci. 40(4), 885–890 (2000)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations