Advertisement

An integrated in phase FD procedure for DiffEqns in chemical problems

  • Yu-Yu Ma
  • Chia-Liang Lin
  • T. E. SimosEmail author
Original Paper
  • 11 Downloads

Abstract

A newly FD procedure is perused for the effective application on the DiffEqns in Chemical problems.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics Subject Classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflict concerning this paper.

Supplementary material

10910_2019_1070_MOESM1_ESM.pdf (65 kb)
Supplementary material 1 (pdf 64 KB)

References

  1. 1.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)CrossRefGoogle Scholar
  2. 2.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  3. 3.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  4. 4.
    A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)Google Scholar
  5. 5.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)Google Scholar
  6. 6.
    T.E. Kenan Mu, A. Simos, Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)CrossRefGoogle Scholar
  7. 7.
    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)CrossRefGoogle Scholar
  8. 8.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)CrossRefGoogle Scholar
  9. 9.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)CrossRefGoogle Scholar
  10. 10.
    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)Google Scholar
  11. 11.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)Google Scholar
  12. 12.
    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar
  13. 13.
    M.A. Medvedeva, T.E. Simos, An accomplished phase FD process for DEs in chemistry. J. Math. Chem. 57(10), 2208–2228 (2019)CrossRefGoogle Scholar
  14. 14.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)CrossRefGoogle Scholar
  15. 15.
    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)CrossRefGoogle Scholar
  16. 16.
    M.M. Chawla, S.R. Sharma, Families of 5Th order Nyström methods for Y”=F(X, Y) and intervals of periodicity. Computing 26(3), 247–256 (1981)CrossRefGoogle Scholar
  17. 17.
    J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)CrossRefGoogle Scholar
  18. 18.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, New York, 1991), pp. 104–107Google Scholar
  19. 19.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)CrossRefGoogle Scholar
  20. 20.
    M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for Y”=F(X, Y). BIT Numer. Math. 21(4), 455–464 (1981)CrossRefGoogle Scholar
  21. 21.
    M.M. Chawla, Unconditionally stable noumerov-type methods for 2nd order differential-equations. BIT Numer. Math. 23(4), 541–542 (1983)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)CrossRefGoogle Scholar
  24. 24.
    M.M. Chawla, Numerov made explicit has better stability. BIT Numer. Math. 24(1), 117–118 (1984)CrossRefGoogle Scholar
  25. 25.
    M.M. Chawla, P.S. Rao, High-accuracy P-stable methods for Y” = F(T, Y). IMA J. Numer. Anal. 5(2), 215–220 (1985)CrossRefGoogle Scholar
  26. 26.
    M.M. Chawla, Correction. IMA J. Numer. Anal. 6(2), 252–252 (1986)CrossRefGoogle Scholar
  27. 27.
    T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)CrossRefGoogle Scholar
  28. 28.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT Numer. Math. 24, 225–238 (1984)CrossRefGoogle Scholar
  29. 29.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  30. 30.
    M.M. Chawla, A new class of explicit 2-step 4th order methods for Y” = F(T, Y) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)CrossRefGoogle Scholar
  31. 31.
    M.M. Chawla, B. Neta, Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)CrossRefGoogle Scholar
  32. 32.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)CrossRefGoogle Scholar
  33. 33.
    M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for Y”=F(T, Y). J. Comput. Appl. Math. 16(2), 233–236 (1986)CrossRefGoogle Scholar
  34. 34.
    M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for Y”=F(T, Y). J. Comput. Appl. Math. 17(3), 365–368 (1987)CrossRefGoogle Scholar
  35. 35.
    M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput Math. 69(1–2), 85–100 (1998)CrossRefGoogle Scholar
  36. 36.
    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “almost” P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)CrossRefGoogle Scholar
  37. 37.
    M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Modell. 29(2), 63–72 (1999)CrossRefGoogle Scholar
  38. 38.
    J.P. Coleman, Numerical-methods for Y”=F(X, Y) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)CrossRefGoogle Scholar
  39. 39.
    J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for Y” = F(X, Y). J. Comput. Appl. Math. 44(1), 95–114 (1992)CrossRefGoogle Scholar
  40. 40.
    J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for Y”=F(X, Y). IMA J. Numer. Anal. 16(2), 179–199 (1996)CrossRefGoogle Scholar
  41. 41.
    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for Y ” = F(X, Y). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)CrossRefGoogle Scholar
  42. 42.
    L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)CrossRefGoogle Scholar
  43. 43.
    L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)CrossRefGoogle Scholar
  44. 44.
    L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)CrossRefGoogle Scholar
  45. 45.
    L.G. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4—a Fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)CrossRefGoogle Scholar
  46. 46.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)CrossRefGoogle Scholar
  47. 47.
    L.G. Ixaru, M. Rizea, Four step methods for Y”=F(X,Y). J. Comput. Appl. Math. 79(1), 87–99 (1997)CrossRefGoogle Scholar
  48. 48.
    M. Van Daele, G. Vanden Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for Y ”=F(X,Y). Int. J. Comput. Math. 66(3–4), 299–309 (1998)CrossRefGoogle Scholar
  49. 49.
    L.G. Ixaru, B. Paternoster, A conditionally p-stable fourth-order exponential-fitting method for Y ” = F(X, Y). J. Comput. Appl. Math. 106(1), 87–98 (1999)CrossRefGoogle Scholar
  50. 50.
    L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order ODEs. Comput. Phys. Commun. 150(2), 116–128 (2003)CrossRefGoogle Scholar
  52. 52.
    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)CrossRefGoogle Scholar
  53. 53.
    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710–1731 (2019)CrossRefGoogle Scholar
  54. 54.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)CrossRefGoogle Scholar
  55. 55.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  56. 56.
    L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  57. 57.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  58. 58.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  59. 59.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  60. 60.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)CrossRefGoogle Scholar
  61. 61.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  62. 62.
    M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)CrossRefGoogle Scholar
  63. 63.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)CrossRefGoogle Scholar
  64. 64.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)CrossRefGoogle Scholar
  65. 65.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)CrossRefGoogle Scholar
  66. 66.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)CrossRefGoogle Scholar
  67. 67.
    M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)CrossRefGoogle Scholar
  68. 68.
    L.G. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order ODEs. J. Comput. Appl. Math. 132(1), 83–93 (2001)CrossRefGoogle Scholar
  69. 69.
    A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)CrossRefGoogle Scholar
  70. 70.
    C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)CrossRefGoogle Scholar
  71. 71.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)CrossRefGoogle Scholar
  72. 72.
    A.D. Raptis, Exponential multisteo methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)Google Scholar
  73. 73.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)CrossRefGoogle Scholar
  74. 74.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)CrossRefGoogle Scholar
  75. 75.
    J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)CrossRefGoogle Scholar
  76. 76.
    A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)CrossRefGoogle Scholar
  77. 77.
    A.D. Raptis, 2-step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)Google Scholar
  78. 78.
    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)CrossRefGoogle Scholar
  79. 79.
    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{ Y }^{iv}\)+F.Y=G. Computing 24(2–3), 241–250 (1980)CrossRefGoogle Scholar
  80. 80.
    H. Van De Vyver, A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)CrossRefGoogle Scholar
  81. 81.
    H. Van De Vyver, On the generation of p-stable exponentially fitted Runge–Kutta–Nyström methods by exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)CrossRefGoogle Scholar
  82. 82.
    M. Van Daele, G.V. Berghe, P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)CrossRefGoogle Scholar
  83. 83.
    M. Van Daele, G. Vanden Berghe, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)CrossRefGoogle Scholar
  84. 84.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)CrossRefGoogle Scholar
  85. 85.
    G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)CrossRefGoogle Scholar
  86. 86.
    D. Hollevoet, M. Van Daele, G. Vanden Berghe, The optimal exponentially-fitted numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)CrossRefGoogle Scholar
  87. 87.
    J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)Google Scholar
  88. 88.
    J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge–Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)Google Scholar
  89. 89.
    J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)CrossRefGoogle Scholar
  90. 90.
    J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)Google Scholar
  91. 91.
    J.M. Franco, I. Gomez, Symplectic explicit methods of Runge–Kutta-Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)CrossRefGoogle Scholar
  92. 92.
    J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge–Kutta–Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)CrossRefGoogle Scholar
  93. 93.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)CrossRefGoogle Scholar
  94. 94.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)CrossRefGoogle Scholar
  95. 95.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)CrossRefGoogle Scholar
  96. 96.
    J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)CrossRefGoogle Scholar
  97. 97.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)CrossRefGoogle Scholar
  98. 98.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)CrossRefGoogle Scholar
  99. 99.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)CrossRefGoogle Scholar
  100. 100.
    J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)CrossRefGoogle Scholar
  101. 101.
    J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)CrossRefGoogle Scholar
  102. 102.
    J.M. Franco, Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)CrossRefGoogle Scholar
  103. 103.
    J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)CrossRefGoogle Scholar
  104. 104.
    X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)CrossRefGoogle Scholar
  105. 105.
    A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Modell. 42, 873–876 (2005)CrossRefGoogle Scholar
  106. 106.
    L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (Energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)Google Scholar
  107. 107.
    F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)Google Scholar
  108. 108.
    A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)CrossRefGoogle Scholar
  109. 109.
    A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)CrossRefGoogle Scholar
  110. 110.
    H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Modern Phys. C 17(5), 663–675 (2006)CrossRefGoogle Scholar
  111. 111.
    H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)CrossRefGoogle Scholar
  112. 112.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)Google Scholar
  113. 113.
    B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)CrossRefGoogle Scholar
  114. 114.
    H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(\text{ y } ^{\prime \prime } = \text{ f } (\text{ x, } \text{ y })\). J. Comput. Appl. Math. 209(1), 33–53 (2007)CrossRefGoogle Scholar
  115. 115.
    H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH—Commun. Math. Comput. Chem. 60(3), 711–732 (2008)Google Scholar
  116. 116.
    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)CrossRefGoogle Scholar
  117. 117.
    A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)CrossRefGoogle Scholar
  118. 118.
    F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. Article ID 407151 (2011)Google Scholar
  119. 119.
    H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)CrossRefGoogle Scholar
  120. 120.
    Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)CrossRefGoogle Scholar
  121. 121.
    M. Van Daele, G. Vanden Berghe, G. De Meyer, Properties and implementation of r-adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)CrossRefGoogle Scholar
  122. 122.
    J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)CrossRefGoogle Scholar
  123. 123.
    Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)CrossRefGoogle Scholar
  124. 124.
    Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)CrossRefGoogle Scholar
  125. 125.
    J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)CrossRefGoogle Scholar
  126. 126.
    J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)CrossRefGoogle Scholar
  127. 127.
    J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)CrossRefGoogle Scholar
  128. 128.
    C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)CrossRefGoogle Scholar
  129. 129.
    C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)CrossRefGoogle Scholar
  130. 130.
    H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)CrossRefGoogle Scholar
  131. 131.
    J.P. Coleman, L.G. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)CrossRefGoogle Scholar
  132. 132.
    J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)CrossRefGoogle Scholar
  133. 133.
    J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge–Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)CrossRefGoogle Scholar
  134. 134.
    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)CrossRefGoogle Scholar
  135. 135.
    Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)CrossRefGoogle Scholar
  136. 136.
    C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Modern Phys. C 18(3), 419–431 (2007)CrossRefGoogle Scholar
  137. 137.
    J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486–491 (2008)CrossRefGoogle Scholar
  138. 138.
    H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)CrossRefGoogle Scholar
  139. 139.
    H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5) Article Number: 056705 (2009)Google Scholar
  140. 140.
    Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Huaiyin Institute of TechnologyHuaiyinChina
  2. 2.School of ArtNingbo PolytechnicNingboChina
  3. 3.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Data Recovery Key Laboratory of Sichuan ProvinceNeijiang Normal UniversityNeijiangChina
  5. 5.Group of Modern Computational MethodsUral Federal UniversityEkaterinburgRussian Federation
  6. 6.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  7. 7.AthensGreece

Personalised recommendations