Advertisement

A perfect in phase FD algorithm for problems in quantum chemistry

  • Junlai Qiu
  • Junjie Huang
  • T. E. SimosEmail author
Original Paper
  • 21 Downloads

Abstract

Our research pays attention to the deployment of newly algorithm which is useful on quantum chemical problems.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics Subject Classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

References

  1. 1.
    Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)CrossRefGoogle Scholar
  2. 2.
    M.M. Chawla, S.R. Sharma, Families of 5th order Nyström methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X }, \text{ Y })\) and intervals of periodicity. Computing 26(3), 247–256 (1981)CrossRefGoogle Scholar
  3. 3.
    J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)CrossRefGoogle Scholar
  4. 4.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, the Initial Value Problem (Wiley, London, 1991), pp. 104–107Google Scholar
  5. 5.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)CrossRefGoogle Scholar
  6. 6.
    M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for \(\text{ Y }^{\prime \prime }=\text{ F }(\text{ X },\text{ Y })\). BIT 21(4), 455–464 (1981)CrossRefGoogle Scholar
  7. 7.
    M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. BIT 23(4), 541–542 (1983)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)CrossRefGoogle Scholar
  10. 10.
    M.M. Chawla, Numerov made explicit has better stability. BIT 24(1), 117–118 (1984)CrossRefGoogle Scholar
  11. 11.
    M.M. Chawla, P.S. Rao, High-accuracy P-stable methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })\). IMA J. Numer. Anal. 5(2), 215–220 (1985) and M.M Chawla, Correction. IMA J. Numer. Anal. 6(2), 252–252 (1986)Google Scholar
  12. 12.
    T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)CrossRefGoogle Scholar
  13. 13.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)CrossRefGoogle Scholar
  14. 14.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)CrossRefGoogle Scholar
  15. 15.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  16. 16.
    M.M. Chawla, A new class of explicit 2-step 4th order methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })\) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)CrossRefGoogle Scholar
  17. 17.
    M.M. Chawla, B. Neta, Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)CrossRefGoogle Scholar
  18. 18.
    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)CrossRefGoogle Scholar
  19. 19.
    M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })\). J. Comput. Appl. Math. 16(2), 233–236 (1986)CrossRefGoogle Scholar
  20. 20.
    J. Fang, C. Liu, C.-W. Hsu, T.E. Simos, C. Tsitouras, Explicit hybrid six–step, sixth order, fully symmetric methods for solving \(\text{ y }^{\prime \prime } = \text{ f }(\text{ x }, \text{ y })\). Math. Methods Appl. Sci. 42(9), 3305–3314 (2019)CrossRefGoogle Scholar
  21. 21.
    M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })\). J. Comput. Appl. Math. 17(3), 365–368 (1987)CrossRefGoogle Scholar
  22. 22.
    M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1–2), 85–100 (1998)CrossRefGoogle Scholar
  23. 23.
    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “almost” P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)CrossRefGoogle Scholar
  24. 24.
    M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Modell. 29(2), 63–72 (1999)CrossRefGoogle Scholar
  25. 25.
    J.P. Coleman, Numerical-methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)CrossRefGoogle Scholar
  26. 26.
    J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). J. Comput. Appl. Math. 44(1), 95–114 (1992)CrossRefGoogle Scholar
  27. 27.
    C. Tsitouras, T.E. Simos, On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15(2), (2018).  https://doi.org/10.1007/s00009-018-1089-9
  28. 28.
    S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)CrossRefGoogle Scholar
  29. 29.
    T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)CrossRefGoogle Scholar
  30. 30.
    T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. (2012).  https://doi.org/10.1155/2012/182536
  31. 31.
    T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. (2012).  https://doi.org/10.1155/2012/420387
  32. 32.
    J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). IMA J. Numer. Anal. 16(2), 179–199 (1996)CrossRefGoogle Scholar
  33. 33.
    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)CrossRefGoogle Scholar
  34. 34.
    L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)CrossRefGoogle Scholar
  35. 35.
    L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)CrossRefGoogle Scholar
  36. 36.
    L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)CrossRefGoogle Scholar
  37. 37.
    L.G. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4—a fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)CrossRefGoogle Scholar
  38. 38.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)CrossRefGoogle Scholar
  39. 39.
    L.G. Ixaru, M. Rizea, Four step methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). J. Comput. Appl. Math. 79(1), 87–99 (1997)CrossRefGoogle Scholar
  40. 40.
    M. Van Daele, G. Vanden Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). Int. J. Comput. Math. 66(3–4), 299–309 (1998)CrossRefGoogle Scholar
  41. 41.
    L.G. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). J. Comput. Appl. Math. 106(1), 87–98 (1999)CrossRefGoogle Scholar
  42. 42.
    L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)CrossRefPubMedGoogle Scholar
  43. 43.
    D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)CrossRefGoogle Scholar
  44. 44.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)CrossRefGoogle Scholar
  45. 45.
    G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)CrossRefGoogle Scholar
  46. 46.
    D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method. Abstr. Appl. Anal., Article Number: 910624 Published (2013)Google Scholar
  47. 47.
    I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)Google Scholar
  48. 48.
    I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)CrossRefGoogle Scholar
  49. 49.
    C. Tsitouras, I.T. Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)CrossRefGoogle Scholar
  50. 50.
    C. Tsitouras, I.T. Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)CrossRefGoogle Scholar
  51. 51.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \(Y^{\prime \prime }(X)=F(X, Y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)CrossRefGoogle Scholar
  52. 52.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \(\text{ x }^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\). Math. Methods Appl. Sci. 42(6), 2025–2032 (2019)CrossRefGoogle Scholar
  53. 53.
    Z. Kalogiratou, Th. Monovasilis, T.E. Simos, New fifth order two-derivative Runge–Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955–1966 (2019)Google Scholar
  54. 54.
    T.E. Simos, C.H. Tsitouras, High phase-lag order, four-step methods for solving \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). Appl. Comput. Math. 17(3), 307–316 (2018)Google Scholar
  55. 55.
    T.E. Simos, C. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)CrossRefGoogle Scholar
  56. 56.
    T.E. Simos, C. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)CrossRefGoogle Scholar
  57. 57.
    D.B. Berg, T.E. Simos, C. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)CrossRefGoogle Scholar
  58. 58.
    T.E. Simos, C. Tsitouras, Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)CrossRefGoogle Scholar
  59. 59.
    Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4) Article Number: 168.  https://doi.org/10.1007/s00009-018-1216-7 (2018)
  60. 60.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Fitted modifications of Runge–Kutta pairs of orders 6(5). Math. Methods Appl. Sci. 41(16), 6184–6194 (2018)CrossRefGoogle Scholar
  61. 61.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 41(16), 6997–7006 (2018)CrossRefGoogle Scholar
  62. 62.
    T.E. Simos, C. Tsitouras, I.T. Famelis, Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)Google Scholar
  63. 63.
    T.E. Simos, C. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x, y)\). Appl. Comput. Math. 17(3), 307–316 (2018)Google Scholar
  64. 64.
    A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)CrossRefGoogle Scholar
  65. 65.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)CrossRefGoogle Scholar
  66. 66.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)Google Scholar
  67. 67.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)CrossRefGoogle Scholar
  68. 68.
    T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)CrossRefGoogle Scholar
  69. 69.
    T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)Google Scholar
  70. 70.
    Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)CrossRefGoogle Scholar
  71. 71.
    H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)CrossRefGoogle Scholar
  72. 72.
    T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)Google Scholar
  73. 73.
    L.G. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)CrossRefGoogle Scholar
  74. 74.
    C. Liu, C.-W. Hsu, C. Tsitouras, T.E. Simos, Hybrid Numerov-Type methods with coefficients trained to perform better on classical orbits. Bull. Malays. Math. Sci. Soc. 42(5), 2119–2134 (2019).  https://doi.org/10.1007/s40840-019-00775-z CrossRefGoogle Scholar
  75. 75.
    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)CrossRefGoogle Scholar
  76. 76.
    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710–1731 (2019)CrossRefGoogle Scholar
  77. 77.
    J. Lv, T.E. Simos, A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems. J. Math. Chem. 57(8), 1983–2006 (2019)CrossRefGoogle Scholar
  78. 78.
    X. Zhang, T.E. Simos, A multiple stage absolute in phase scheme for chemistry problems. J. Math. Chem. (2019).  https://doi.org/10.1007/s10910-019-01054-9 Google Scholar
  79. 79.
    T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)CrossRefGoogle Scholar
  80. 80.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)CrossRefGoogle Scholar
  81. 81.
    G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor–corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)CrossRefGoogle Scholar
  82. 82.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)CrossRefGoogle Scholar
  83. 83.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  84. 84.
    L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  85. 85.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  86. 86.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  87. 87.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  88. 88.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)CrossRefGoogle Scholar
  89. 89.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  90. 90.
    M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II. Explicit Method. J. Comput. Appl. Math. 15, 329–337 (1986)CrossRefGoogle Scholar
  91. 91.
    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)Google Scholar
  92. 92.
    M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)CrossRefGoogle Scholar
  93. 93.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)CrossRefGoogle Scholar
  94. 94.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)CrossRefGoogle Scholar
  95. 95.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)CrossRefGoogle Scholar
  96. 96.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)CrossRefGoogle Scholar
  97. 97.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)CrossRefGoogle Scholar
  98. 98.
    M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)CrossRefGoogle Scholar
  99. 99.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  100. 100.
    K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)CrossRefGoogle Scholar
  101. 101.
    L.G. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)CrossRefGoogle Scholar
  102. 102.
    A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)CrossRefGoogle Scholar
  103. 103.
    C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)CrossRefGoogle Scholar
  104. 104.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)CrossRefGoogle Scholar
  105. 105.
    F. Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)Google Scholar
  106. 106.
    W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)CrossRefGoogle Scholar
  107. 107.
    C. Liu, C.-W. Hsu, T.E. Simos, C. Tsitouras, Phase-fitted, six-stepmethods for solving \(x^{\prime \prime }=f(t, x)\). Math. Methods Appl. Sci. 42(11), 3942–3949 (2019)CrossRefGoogle Scholar
  108. 108.
    M. Dong, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. FILOMAT 31(15), 4999–5012 (2017)CrossRefGoogle Scholar
  109. 109.
    A.D. Raptis, Exponential multisteo methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)Google Scholar
  110. 110.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)CrossRefGoogle Scholar
  111. 111.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)CrossRefGoogle Scholar
  112. 112.
    C. Lin, J.J. Chen, T.E. Simos, C. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), (2019).  https://doi.org/10.1007/s00009-019-1336-8
  113. 113.
    L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)CrossRefGoogle Scholar
  114. 114.
    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)CrossRefGoogle Scholar
  115. 115.
    J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)CrossRefGoogle Scholar
  116. 116.
    A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)CrossRefGoogle Scholar
  117. 117.
    A.D. Raptis, 2-Step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)Google Scholar
  118. 118.
    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)CrossRefGoogle Scholar
  119. 119.
    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{ Y }^{iv}+\text{ F }\cdot \text{ Y }=\text{ G }\). Computing 24(2–3), 241–250 (1980)CrossRefGoogle Scholar
  120. 120.
    H. Van De Vyver, A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)CrossRefGoogle Scholar
  121. 121.
    H. Van De Vyver, On the generation of P-stable exponentially fitted Runge–Kutta–Nyström methods by exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)CrossRefGoogle Scholar
  122. 122.
    M. Van Daele, G.V. Berghe, P-stable obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)CrossRefGoogle Scholar
  123. 123.
    M. Van Daele, G. Vanden Berghe, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)CrossRefGoogle Scholar
  124. 124.
    G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119–148 (2019)CrossRefGoogle Scholar
  125. 125.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms 79, 787–800 (2018)CrossRefGoogle Scholar
  126. 126.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)CrossRefGoogle Scholar
  127. 127.
    G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)CrossRefGoogle Scholar
  128. 128.
    D. Hollevoet, M. Van Daele, G. Vanden Berghe, the optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)CrossRefGoogle Scholar
  129. 129.
    J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)Google Scholar
  130. 130.
    J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge–Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)Google Scholar
  131. 131.
    J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)CrossRefGoogle Scholar
  132. 132.
    J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)Google Scholar
  133. 133.
    J.M. Franco, I. Gomez, Symplectic explicit methods of Runge–Kutta–Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)CrossRefGoogle Scholar
  134. 134.
    J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge–Kutta–Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)CrossRefGoogle Scholar
  135. 135.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)CrossRefGoogle Scholar
  136. 136.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)CrossRefGoogle Scholar
  137. 137.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)CrossRefGoogle Scholar
  138. 138.
    J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)CrossRefGoogle Scholar
  139. 139.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)CrossRefGoogle Scholar
  140. 140.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)CrossRefGoogle Scholar
  141. 141.
    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)CrossRefGoogle Scholar
  142. 142.
    J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)CrossRefGoogle Scholar
  143. 143.
    J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)CrossRefGoogle Scholar
  144. 144.
    J.M. Franco, Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)CrossRefGoogle Scholar
  145. 145.
    J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)CrossRefGoogle Scholar
  146. 146.
    X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)CrossRefGoogle Scholar
  147. 147.
    A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Modell. 42, 873–876 (2005)CrossRefGoogle Scholar
  148. 148.
    L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)Google Scholar
  149. 149.
    F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)Google Scholar
  150. 150.
    A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)CrossRefGoogle Scholar
  151. 151.
    A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)CrossRefGoogle Scholar
  152. 152.
    H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663–675 (2006)CrossRefGoogle Scholar
  153. 153.
    H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)CrossRefGoogle Scholar
  154. 154.
    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)Google Scholar
  155. 155.
    B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)CrossRefGoogle Scholar
  156. 156.
    H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })\). J. Comput. Appl. Math. 209(1), 33–53 (2007)CrossRefGoogle Scholar
  157. 157.
    H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711–732 (2008)Google Scholar
  158. 158.
    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)CrossRefGoogle Scholar
  159. 159.
    A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)CrossRefGoogle Scholar
  160. 160.
    F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. 2011 Article ID 407151 (2011)Google Scholar
  161. 161.
    H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)CrossRefGoogle Scholar
  162. 162.
    Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)CrossRefGoogle Scholar
  163. 163.
    M. Van Daele, G. Vanden Berghe, H. De Meyer, Properties and implementation of R-adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)CrossRefGoogle Scholar
  164. 164.
    J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)CrossRefGoogle Scholar
  165. 165.
    Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)CrossRefGoogle Scholar
  166. 166.
    Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)CrossRefGoogle Scholar
  167. 167.
    J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)CrossRefGoogle Scholar
  168. 168.
    J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)CrossRefGoogle Scholar
  169. 169.
    J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)CrossRefGoogle Scholar
  170. 170.
    C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)CrossRefGoogle Scholar
  171. 171.
    C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)CrossRefGoogle Scholar
  172. 172.
    H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)CrossRefGoogle Scholar
  173. 173.
    J.P. Coleman, L.G. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)CrossRefGoogle Scholar
  174. 174.
    J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)CrossRefGoogle Scholar
  175. 175.
    J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge–Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)CrossRefGoogle Scholar
  176. 176.
    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)CrossRefGoogle Scholar
  177. 177.
    Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)CrossRefGoogle Scholar
  178. 178.
    C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419–431 (2007)CrossRefGoogle Scholar
  179. 179.
    J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486–491 (2008)CrossRefGoogle Scholar
  180. 180.
    H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)CrossRefGoogle Scholar
  181. 181.
    H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5) Article Number: 056705 (2009)Google Scholar
  182. 182.
    Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)CrossRefGoogle Scholar
  183. 183.
    Z. Chen, C. Liu, C.-W. Hsu, T.E. Simos, A new multistage multistep full in phase algorithm with optimized characteristics for problems in chemistry. J. Math. Chem. 57(4), 1112–1139 (2019)CrossRefGoogle Scholar
  184. 184.
    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)CrossRefGoogle Scholar
  185. 185.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  186. 186.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  187. 187.
    A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)Google Scholar
  188. 188.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)Google Scholar
  189. 189.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)CrossRefGoogle Scholar
  190. 190.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)CrossRefGoogle Scholar
  191. 191.
    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvest. Vysshikh Uchebnykh Zavedenii Aviat. Tekh. 1, 49–53 (1998)Google Scholar
  192. 192.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)Google Scholar
  193. 193.
    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ComputingNeusoft Institute of GuangdongFoshanChina
  2. 2.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  4. 4.AthensGreece
  5. 5.Data Recovery Key Laboratory of Sichuan ProvinceNeijiang Normal UniversityNeijiangChina

Personalised recommendations