Journal of Mathematical Chemistry

, Volume 57, Issue 9, pp 2154–2167 | Cite as

Inherently trap-free convex landscapes for fully quantum optimal control

  • Re-Bing WuEmail author
  • Qiuyang Sun
  • Tak-san Ho
  • Herschel Rabitz
Original Paper


A general quantum system may be steered by a control of either classical or quantum nature and the latter scenario is particularly important in many quantum engineering problems including coherent feedback and reservoir engineering. In this paper, we consider a quantum system steered by a quantum controller and explore the underlying Q–Q (quantum–quantum) control landscape features for the expectation value of an arbitrary observable of the system, with the control being the engineered initial state of the quantum controller. It is shown that the Q–Q control landscape is inherently convex, and hence devoid of local suboptima. Distinct from the landscapes for quantum systems controlled by time-dependent classical fields, the controllability is not a prerequisite for the Q–Q landscape to be trap-free, and there are no saddle points that generally exist with a classical controller. However, the forms of Hamiltonian, the flexibility in choosing initial state of the controller, as well as the control duration, can influence the reachable optimal value on the landscape. Moreover, we show that the optimal solution of the Q–Q control landscape can be readily extracted from a de facto landscape observable playing the role of an effective “observer”. For illustration of the basic Q–Q landscape principles, we consider the Jaynes–Cummings model depicting a two-level atom in the presence of a cavity quantized radiation field.


Quantum control Optimal control Convex optimization 



Re-Bing Wu acknowledges the support of the National Key R&D Program of China (Grants No. 2017YFA0304304) and NSFC (Grants No. 61833010 and No. 61773232). Qiuyang Sun acknowledges the support of the Princeton Plasma Science and Technology Program and the National Science Foundation (CHE-1763198). Tak-San Ho acknowledges the support of the Department of Energy (DE-FG02-02ER15344). Herschel Rabitz acknowledges the support of the Army Research Office (W911NF-19-1-0382).


  1. 1.
    C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010)CrossRefGoogle Scholar
  2. 2.
    S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Koeckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrueggen, D. Sugny, F.K. Wilhelm, Training schrodinger’s cat: quantum optimal control strategic report on current status, visions and goals for research in europe. Eur. Phys. J. D 69(12), 279 (2015)CrossRefGoogle Scholar
  3. 3.
    R.S. Judson, H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68(10), 1500–1503 (1992)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    J. Werschnik, E.K.U. Gross, Quantum optimal control theory. J. Phys. B-atomic Mol. Opt. Phys. 40(18), R175–R211 (2007)CrossRefGoogle Scholar
  5. 5.
    H.A. Rabitz, M.M. Hsieh, C.M. Rosenthal, Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5(4), 222–229 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Dunjko, J.M. Taylor, H.J. Briegel, Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    E. Aimeur, G. Brassard, S. Gambs, Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Russell, H. Rabitz, R.-B. Wu, Control landscapes are almost always trap free: a geometric assessment. J. Phys. A Math. Theor. 50(20), 205302 (2017)CrossRefGoogle Scholar
  10. 10.
    K.W. Moore, H. Rabitz, Exploring constrained quantum control landscapes. J. Chem. Phys. 137(13), 134113 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    F. Xue, S.X. Yu, C.P. Sun, Quantum control limited by quantum decoherence. Phys. Rev. A 73(1), 013403 (2006)CrossRefGoogle Scholar
  12. 12.
    H.C. Fu, H. Dong, X.F. Liu, C.P. Sun, Indirect control with a quantum accessor: coherent control of multilevel system via a qubit chain. Phys. Rev. A 75(5), 052317 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Romano, D. D’Alessandro, Environment-mediated control of a quantum system. Phys. Rev. Lett. 97(8), 080402 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    R. Romano, D. D’Alessandro, Incoherent control and entanglement for two-dimensional coupled systems. Phys. Rev. A 73(2), 022323 (2006)CrossRefGoogle Scholar
  15. 15.
    D. D’Alessandro, R. Romano, Indirect controllability of quantum systems; a study of two interacting quantum bits. IEEE Trans. Autom. Control 57(8), 2009–2020 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000)Google Scholar
  17. 17.
    M. Gruebele, Fully quantum coherent control. Chem Phys 276(3), 33–46 (2001) CrossRefGoogle Scholar
  18. 18.
    L. Braun, W.T. Strunz, J.S. Briggs, Classical limit of the interaction of a quantum system with the electromagnetic field. Phys. Rev. A 70(3), 033814 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Deffner, Optimal control of a qubit in an optical cavity. J. Phys. B At. Mol. Opt. Phys. 47(14), 145502 (2014)CrossRefGoogle Scholar
  20. 20.
    V. Giesz, N. Somaschi, G. Hornecker, T. Grange, B. Reznychenko, L. De Santis, J. Demory, C. Gomez, I. Sagnes, A. Lemaitre, O. Krebs, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffeves, P. Senellart, Coherent control of a solid-state quantum bit with few-photon pulses, arXiv:1512.04725
  21. 21.
    A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’Brien, A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    H.J. Kimble, The quantum internet. Nature 453(7198), 1023–1030 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    C.K. Law, J.H. Eberly, Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    A. Pechen, Engineering arbitrary pure and mixed quantum states. Phys. Rev. A 84(4), 042106 (2011)CrossRefGoogle Scholar
  25. 25.
    L. G. Yaffe, Large \(n\) limits as classical mechanics, Rev. Mod. Phys. 54 (1982) 407–435.
  26. 26.
    V. Ramakrishna, M.V. Salapaka, M. Dahleh, H. Rabitz, A. Peirce, Controllability of molecular-systems. Phys. Rev. A 51(2), 960–966 (1995)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    R.-B. Wu, R. Long, J. Dominy, T.-S. Ho, H. Rabitz, Singularities of quantum control landscapes. Phys. Rev. A 86(1), 013405 (2012)CrossRefGoogle Scholar
  28. 28.
    C. Altafini, F. Ticozzi, Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57(8), 1898–1917 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Wu, H. Rabitz, M. Hsieh, Characterization of the critical submanifolds in quantum ensemble control landscapes. J. Phys. A Math. Theor. 41(1), 1–12 (2008)CrossRefGoogle Scholar
  30. 30.
    J.F. Haase, Z.-Y. Wang, J. Casanova, M.B. Plenio, Soft quantum control for highly selective interactions among joint quantum systems. Phys. Rev. Lett. 121, 050402 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  32. 32.
    J. Dominy, H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control. J. Math. Phys. 53(8), 082201 (2012)CrossRefGoogle Scholar
  33. 33.
    A.E. Bashirov, E.M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications. J. Math. Anal. Appl. 337(1), 36–48 (2008)CrossRefGoogle Scholar
  34. 34.
    K. Kraus, General state changes in quantum theory. Ann. Phys. 64, 311–335 (1971)CrossRefGoogle Scholar
  35. 35.
    S. Lloyd, Coherent quantum feedback. Phys. Rev. A 62(2), 022108 (2000)CrossRefGoogle Scholar
  36. 36.
    R.-B. Wu, C. Brif, M.R. James, H. Rabitz, Limits of optimal control yields achievable with quantum controllers. Phys. Rev. A 91(4), 042327 (2015)CrossRefGoogle Scholar
  37. 37.
    E. Zahedinejad, S. Schirmer, B.C. Sanders, Evolutionary algorithms for hard quantum control. Phys. Rev. A 90(3), 032310 (2014)CrossRefGoogle Scholar
  38. 38.
    E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to beam maser. Proc. IEEE 51(1), 89 (1963)CrossRefGoogle Scholar
  39. 39.
    M. Hofheinz, H. Wang, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, J. Wenner, J.M. Martinis, A.N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009). PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    M. Grant, S. Boyd, Cvx: Matlab software for disciplined convex programming, version 2.0 beta.
  41. 41.
    R. Wu, H. Rabitz, M. Hsieh, Characterization of the critical submanifolds in quantum ensemble control landscapes. J. Phys. A Math. Theor. 41(1), 015006 (2008)CrossRefGoogle Scholar
  42. 42.
    M. Hsieh, R. Wu, H. Rabitz, Topology of the quantum control landscape for observables. J. Chem. Phys. 130(10), 104109 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    H. Rabitz, M. Hsieh, C. Rosenthal, Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72(5), 052337 (2005)CrossRefGoogle Scholar
  44. 44.
    C. Joe-Wong, T.-S. Ho, R. Long, H. Rabitz, R. Wu, Topology of classical molecular optimal control landscapes in phase space. J. Chem. Phys. 138(12), 124114 (2013)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AutomationTsinghua UniversityBeijingChina
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations