Advertisement

A multiple stage absolute in phase scheme for chemistry problems

  • Xunying Zhang
  • T. E. SimosEmail author
Original Paper
  • 3 Downloads

Abstract

We give attention to the evolvement of newly FD scheme for problems existed in Chemistry.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics Subject Classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Supplementary material

10910_2019_1054_MOESM1_ESM.pdf (224 kb)
Supplementary material 1 (pdf 223 KB)

References

  1. 1.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)CrossRefGoogle Scholar
  2. 2.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  3. 3.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  4. 4.
    A.R. Leach, Molecular Modelling-Principles and Applications (Pearson, Essex, 2001)Google Scholar
  5. 5.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)Google Scholar
  6. 6.
    M.M Chawla, P.S. Rao, High-Accuracy P-stable methods for \(Y^{\prime \prime } = F(T,Y)\). IMA J. Numer. Anal. 5(2), 215–220 (1985) (M.M Chawla, Correction, IMA J. Numer. Anal. 6(2), 252–252(1986))Google Scholar
  7. 7.
    M.M. Chawla, B. Neta, Families of 2-step 4Th-order P-stable methods for 2Nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)CrossRefGoogle Scholar
  8. 8.
    M.M Chawla, P.S. Rao, A noumerov-type method with minimal phase-lag for the integration of 2Nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)Google Scholar
  9. 9.
    M.M. Chawla, P.S. Rao, B. Neta, 2-step 4Th-order P-stable methods with phase-lag of order 6 for \(Y^{\prime \prime }=F(T, Y)\). J Comput. Appl. Math. 16(2), 233–236 (1986)CrossRefGoogle Scholar
  10. 10.
    M.M. Chawla, P.S. Rao, An explicit 6Th-order method with phase-lag of order 8 for \(Y^{\prime \prime }=F(T, Y)\). J. Comput. Appl. Math. 17(3), 365–368 (1987)CrossRefGoogle Scholar
  11. 11.
    F. Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)Google Scholar
  12. 12.
    W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation. Adv. Math. Phys. 2016, 8181927 (2016).  https://doi.org/10.1155/2016/8181927 CrossRefGoogle Scholar
  14. 14.
    M. Dong, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31(15), 4999–5012 (2017)CrossRefGoogle Scholar
  15. 15.
    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “Almost” P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)CrossRefGoogle Scholar
  16. 16.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)CrossRefGoogle Scholar
  19. 19.
    L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)CrossRefGoogle Scholar
  20. 20.
    V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)CrossRefGoogle Scholar
  22. 22.
    J.P. Coleman, Numerical-methods for \(Y^{\prime \prime }=F(X, Y)\) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)CrossRefGoogle Scholar
  23. 23.
    J.P. Coleman, L. Gr, Ixaru, P-stability and exponential-fitting methods for \(Y^{\prime \prime }=F(X, Y)\). IMA J. Numer. Anal. 16(2), 179–199 (1996)CrossRefGoogle Scholar
  24. 24.
    J. Zheng, C. Liu, T.E. Simos, A new two-step finite difference pair with optimal properties. J. Math. Chem. 56(3), 770–798 (2018)CrossRefGoogle Scholar
  25. 25.
    L.Gr. Ixaru, S. Berceanu, Coleman’s method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)Google Scholar
  26. 26.
    L.Gr. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)Google Scholar
  27. 27.
    L.Gr. Ixaru, G. Vanden Berghe, H. DeMeyer, M.Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)Google Scholar
  28. 28.
    L.Gr. Ixaru, M. Rizea, Four step methods for \(Y^{\prime \prime }=F(X,Y)\). J. Comput. Appl. Math. 79(1), 87–99 (1997)Google Scholar
  29. 29.
    Z. Chen, C. Liu, T.E. Simos, New three-stages symmetric two step method with improved properties for second order initial/boundary value problems. J. Math. Chem. 56(9), 2591–2616 (2018)CrossRefGoogle Scholar
  30. 30.
    R. Hao, T.E. Simos, New Runge-Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. J. Math. Chem. 56(10), 3014–3044 (2018)CrossRefGoogle Scholar
  31. 31.
    G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119–148 (2019)CrossRefGoogle Scholar
  32. 32.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge-Kutta methods. Numer. Algorithms 79, 787–800 (2018)CrossRefGoogle Scholar
  33. 33.
    G. Wang, T.E. Simos, New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. J. Math. Chem. 57(2), 494–515 (2019)CrossRefGoogle Scholar
  34. 34.
    M.Van Daele, G. Vanden Berghe, H. DeMeyer, L.Gr. Ixaru, Exponential-fitted four-step methods for \(Y^{\prime \prime }=F(X,Y)\). Int. J. Comput. Math. 66(3–4), 299–309 (1998)Google Scholar
  35. 35.
    L.Gr. Ixaru, G. VandenBerghe, H.DeMeyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)Google Scholar
  36. 36.
    M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)CrossRefGoogle Scholar
  37. 37.
    L.Gr. Ixaru, M. Rizea, G. VandenBerghe, H.DeMeyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)Google Scholar
  38. 38.
    M.Van Daele, G. Vanden Berghe, H.DeMeyer, L.Gr. Ixaru, Exponential-Fitted Four-Step Methods for \(Y^{\prime \prime }=F(X,Y)\). Int. J. Comput. Math. 66(3–4), 299–309 (1998)Google Scholar
  39. 39.
    L.Gr. Ixaru, B. Paternoster, A Conditionally P-Stable Fourth-Order Exponential-Fitting Method for \(Y^{\prime \prime } = F(X, Y)\). J. Comput. Appl. Math. 106(1), 87–98 (1999)Google Scholar
  40. 40.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)CrossRefGoogle Scholar
  41. 41.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)CrossRefGoogle Scholar
  42. 42.
    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)Google Scholar
  43. 43.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)Google Scholar
  44. 44.
    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar
  45. 45.
    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710–1731 (2019)CrossRefGoogle Scholar
  46. 46.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)CrossRefGoogle Scholar
  47. 47.
    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)CrossRefGoogle Scholar
  48. 48.
    J. Lv, T.E. Simos, A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems. J. Math. Chem. (in press)Google Scholar
  49. 49.
    Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)CrossRefGoogle Scholar
  50. 50.
    A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)CrossRefGoogle Scholar
  51. 51.
    J.M. Franco, M. Palacios, High-order p-stable multistep methods. J. Comput. Appl. Math. 30, 1 (1990)CrossRefGoogle Scholar
  52. 52.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, the Initial Value Problem (Wiley, Hoboken, 1991), pp. 104–107Google Scholar
  53. 53.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)CrossRefGoogle Scholar
  54. 54.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 36(2), 113–119 (1985)CrossRefGoogle Scholar
  55. 55.
    A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)CrossRefGoogle Scholar
  56. 56.
  57. 57.
    J.P. Coleman, A.S. Booth, Analysis of a family of chebyshev methods for \(Y^{\prime \prime } = F(X, Y)\). J. Comput. Appl. Math. 44(1), 95–114 (1992)CrossRefGoogle Scholar
  58. 58.
    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \(Y^{\prime \prime } = F(X, Y)\). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)CrossRefGoogle Scholar
  59. 59.
    C. Liu, C.-W. Hsu, Ch. Tsitouras, T.E. Simos, Hybrid numerov-type methods with coefficients trained to perform better on classical orbits. Bull. Malays. Math. Sci. Soc. 42(5), 2119–2134 (2019).  https://doi.org/10.1007/s40840-019-00775-z CrossRefGoogle Scholar
  60. 60.
    T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)CrossRefGoogle Scholar
  61. 61.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)CrossRefGoogle Scholar
  62. 62.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  63. 63.
    A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)CrossRefGoogle Scholar
  64. 64.
    C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Phase-fitted, six-step methods for solving \(x^{\prime \prime }=f(t, x)\). Math. Methods Appl. Sci. 42(11), 3942–3949 (2019)CrossRefGoogle Scholar
  65. 65.
    C. Lin, J.J. Chen, T.E. Simos, Ch. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), 69 (2019).  https://doi.org/10.1007/s00009-019-1336-8 CrossRefGoogle Scholar
  66. 66.
    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)CrossRefGoogle Scholar
  67. 67.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, New fifth order two-derivative Runge-Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955–1966 (2019)CrossRefGoogle Scholar
  68. 68.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving x”(t) = f (t, x). Math. Methods Appl. Sci. (in press)Google Scholar
  69. 69.
    A.D. Raptis, 2-step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)Google Scholar
  70. 70.
    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4Th-order differential-equation \(Yiv+F.Y=G\). Computing 24(2–3), 241–250 (1980)Google Scholar
  71. 71.
    K. Tselios, T.E. Simos, Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)CrossRefGoogle Scholar
  72. 72.
    D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)CrossRefGoogle Scholar
  73. 73.
    Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)CrossRefGoogle Scholar
  74. 74.
    Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)CrossRefGoogle Scholar
  75. 75.
    T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)CrossRefGoogle Scholar
  76. 76.
    S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)CrossRefGoogle Scholar
  77. 77.
    T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)CrossRefGoogle Scholar
  78. 78.
    T.E. Simos, New stable closed Newton-Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. 2012, 182536 (2012).  https://doi.org/10.1155/2012/182536 CrossRefGoogle Scholar
  79. 79.
    T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, 420387 (2012).  https://doi.org/10.1155/2012/420387 CrossRefGoogle Scholar
  80. 80.
    I. Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)CrossRefGoogle Scholar
  81. 81.
    I. Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)CrossRefGoogle Scholar
  82. 82.
    I. Alolyan, T.E. Simos, A high algebraic order predictor-corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)CrossRefGoogle Scholar
  83. 83.
    I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)CrossRefGoogle Scholar
  84. 84.
    T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)CrossRefGoogle Scholar
  85. 85.
    I. Alolyan, T.E. Simos, A Runge-Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)CrossRefGoogle Scholar
  86. 86.
    I. Alolyan, T.E. Simos, A predictor-corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)CrossRefGoogle Scholar
  87. 87.
    I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)CrossRefGoogle Scholar
  88. 88.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)CrossRefGoogle Scholar
  89. 89.
    T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)Google Scholar
  90. 90.
    T.E. Simos, High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)CrossRefGoogle Scholar
  91. 91.
    D.F. Papadopoulos, T.E. Simos, A modified Runge-Kutta-Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)CrossRefGoogle Scholar
  92. 92.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)CrossRefGoogle Scholar
  93. 93.
    G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)CrossRefGoogle Scholar
  94. 94.
    D. F. Papadopoulos, T. E Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method. Abstr. Appl. Anal. Article Number: 910624 Published: (2013)Google Scholar
  95. 95.
    I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)Google Scholar
  96. 96.
    I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)CrossRefGoogle Scholar
  97. 97.
    C. Tsitouras, I.T. Famelis, T.E. Simos, On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)CrossRefGoogle Scholar
  98. 98.
    C. Tsitouras, I.T. Famelis, T.E. Simos, Phase-fitted Runge-Kutta pairs of orders 8 (7). J. Comput. Appl. Math. 321, 226–231 (2017)CrossRefGoogle Scholar
  99. 99.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci 42(2), 710–716 (2019)CrossRefGoogle Scholar
  100. 100.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving x”(t) = f (t, x). Math. Methods Appl. Sci. 42(6), 2025–2032 (2019)CrossRefGoogle Scholar
  101. 101.
    Maxim A. Medvedev, T. E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving x”(t) = f (t, x). Math. Methods Appl. Sci. (to appear)Google Scholar
  102. 102.
    Ch. Tsitouras, T.E. Simos, On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J Math. 15(2), 46 (2018).  https://doi.org/10.1007/s00009-018-1089-9 CrossRefGoogle Scholar
  103. 103.
    T.E. Simos, C. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)CrossRefGoogle Scholar
  104. 104.
    T.E. Simos, C. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)CrossRefGoogle Scholar
  105. 105.
    D.B. Berg, T.E. Simos, C. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)CrossRefGoogle Scholar
  106. 106.
    T.E. Simos, C. Tsitouras, Fitted modifications of classical Runge-Kutta pairs of orders 5 (4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)CrossRefGoogle Scholar
  107. 107.
    Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4), 168 (2018).  https://doi.org/10.1007/s00009-018-1216-7 CrossRefGoogle Scholar
  108. 108.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Fitted modifications of Runge-Kutta pairs of orders 6 (5). Math. Methods Appl. Sci. 41(16), 6184–6194 (2018)CrossRefGoogle Scholar
  109. 109.
    M.A. Medvedev, T.E. Simos, C. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 41(16), 6997–7006 (2018)CrossRefGoogle Scholar
  110. 110.
    T.E. Simos, C. Tsitouras, I.T. Famelis, Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)Google Scholar
  111. 111.
    T.E. Simos, C. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x, y)\). Appl. Comput. Math. 17(3), 307–316 (2018)Google Scholar
  112. 112.
    A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)CrossRefGoogle Scholar
  113. 113.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge-Kutta-Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)CrossRefGoogle Scholar
  114. 114.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)Google Scholar
  115. 115.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)CrossRefGoogle Scholar
  116. 116.
    T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)CrossRefGoogle Scholar
  117. 117.
    T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)Google Scholar
  118. 118.
    Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)CrossRefGoogle Scholar
  119. 119.
    H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)CrossRefGoogle Scholar
  120. 120.
    T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)Google Scholar
  121. 121.
    A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003)CrossRefGoogle Scholar
  122. 122.
    T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)CrossRefGoogle Scholar
  123. 123.
    T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)CrossRefGoogle Scholar
  124. 124.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor-corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)CrossRefGoogle Scholar
  125. 125.
    G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)CrossRefGoogle Scholar
  126. 126.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)CrossRefGoogle Scholar
  127. 127.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  128. 128.
    L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  129. 129.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  130. 130.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  131. 131.
    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  132. 132.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)CrossRefGoogle Scholar
  133. 133.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  134. 134.
    M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)CrossRefGoogle Scholar
  135. 135.
    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)Google Scholar
  136. 136.
    T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)CrossRefGoogle Scholar
  137. 137.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)CrossRefGoogle Scholar
  138. 138.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)CrossRefGoogle Scholar
  139. 139.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)CrossRefGoogle Scholar
  140. 140.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)CrossRefGoogle Scholar
  141. 141.
    T.E. Simos, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)CrossRefGoogle Scholar
  142. 142.
    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Unmanned System Research InstituteNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Data Recovery Key Laboratory of Sichuan ProvinceNeijiang Normal UniversityNeijiangPeople’s Republic of China
  4. 4.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  5. 5.AthensGreece

Personalised recommendations