Advertisement

Efficacy of quasi-steady-state approximation in Michaelis–Menten kinetics: a stochastic signature

  • Sharmistha Dhatt
  • Kinshuk BanerjeeEmail author
Original Paper

Abstract

Michaelis–Menten (MM) scheme serves as the benchmark model to characterize enzyme kinetics. Standard theoretical analyses of product formation rate for such a scheme are based on the quasi-steady-state approximation (QSSA). There exist well-established criteria, applicable to both deterministic and stochastic scenarios, to judge the validity of QSSA. These criteria are given in terms of initial concentrations and rate parameters. In this work, we present a complementary stochastic signature to investigate the legitimacy of QSSA in MM kinetics with a finite copy number of species. Our condition is formulated in terms of the time-evolution of the product of coefficients of variation of suitable pair of species population. It can be measured, in principle, from time-series data of molecular population, avoiding estimation of model kinetic parameters.

Keywords

Stochastic Michaelis–Menten kinetics Quasi-steady-state approximation Fluctuation 

Notes

Acknowledgements

S.D. acknowledges UGC, India for D. S. Kothari Post-doctoral fellowship. The authors thank Prof. Kamal Bhattacharyya for fruitful discussions and suggestions.

References

  1. 1.
    D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 4th edn. (Freeman, New York, 2005)Google Scholar
  2. 2.
    L. Michaelis, M.L. Menten, Biochem. Z. 49, 333 (1913)Google Scholar
  3. 3.
    J. Bowen, A. Acrivos, A. Oppenheim, Chem. Eng. Sci. 18, 177 (1963)CrossRefGoogle Scholar
  4. 4.
    L.A. Segel, Bull. Math. Biol. 50, 579 (1988)CrossRefGoogle Scholar
  5. 5.
    S.M. Hanson, S. Schnell, J. Phys. Chem. A 112, 8654 (2008)CrossRefGoogle Scholar
  6. 6.
    Z. Bajer, E. Strehler, Biochem. Biophys. Res. Commun. 417, 982 (2012)CrossRefGoogle Scholar
  7. 7.
    L.A. Segel, M. Slemrod, SIAM Rev. 31, 446 (1989)CrossRefGoogle Scholar
  8. 8.
    J.A.M. Borghans, R.J. De Boer, L.A. Segel, Bull. Math. Biol. 58, 43 (1996)CrossRefGoogle Scholar
  9. 9.
    S. Schnell, C. Mendoza, J. Theor. Biol. 189, 207 (1997)CrossRefGoogle Scholar
  10. 10.
    S. Schnell, P.K. Maini, Bull. Math. Biol. 62, 483 (2000)CrossRefGoogle Scholar
  11. 11.
    A.R. Tzafriri, E.R. Elderman, J. Theor. Biol. 245, 737 (2007)CrossRefGoogle Scholar
  12. 12.
    F. Kargi, Biochem. Biophys. Res. Commun. 382, 57 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Dhatt, K. Bhattacharyya, J. Math. Chem. 51, 1467 (2013)CrossRefGoogle Scholar
  14. 14.
    X.S. Xie, J.K. Trautman, Annu. Rev. Phys. Chem. 49, 441 (1998)CrossRefGoogle Scholar
  15. 15.
    O.L.J. Harriman, M.C. Leake, J. Phys. Condens. Matter. 23, 503101 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Xia, N. Li, X. Fang, Annu. Rev. Phys. Chem. 64, 459 (2013)CrossRefGoogle Scholar
  17. 17.
    S.C. Kou, B.J. Cherayil, W. Min, B.P. English, X.S. Xie, J. Phys. Chem. B 109, 19068 (2005)CrossRefGoogle Scholar
  18. 18.
    A.F. Bartholomay, Biochemistry 1, 223 (1962)CrossRefGoogle Scholar
  19. 19.
    D.A. McQuarrie, J. Chem. Phys. 38, 433 (1963)CrossRefGoogle Scholar
  20. 20.
    R. Grima, FEBS J. 281, 518 (2014). and References thereinCrossRefGoogle Scholar
  21. 21.
    D.T. Gillespie, Phys. A 188, 404 (1992)CrossRefGoogle Scholar
  22. 22.
    D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)CrossRefGoogle Scholar
  23. 23.
    C.V. Rao, A. Arkin, J. Chem. Phys. 118, 4999 (2003)CrossRefGoogle Scholar
  24. 24.
    K.R. Sanft, D.T. Gillespie, L.R. Petzold, IET Syst. Biol. 5, 58 (2011)CrossRefGoogle Scholar
  25. 25.
    H. Abeliovich, Biophys. J. 89, 76 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia
  2. 2.Department of ChemistryA.J.C. Bose CollegeKolkataIndia

Personalised recommendations