Advertisement

Numerical meshless solution of high-dimensional sine-Gordon equations via Fourier HDMR-HC approximation

  • Xin XuEmail author
  • Xiaopeng Luo
  • Herschel Rabitz
Original Paper
  • 1 Downloads

Abstract

In this paper, an implicit time stepping meshless scheme is proposed to find the numerical solution of high-dimensional sine-Gordon equations (SGEs) by combining the high dimensional model representation (HDMR) and the Fourier hyperbolic cross (HC) approximation. To ensure the sparseness of the relevant coefficient matrices of the implicit time stepping scheme, the whole domain is first divided into a set of subdomains, and the relevant derivatives in high-dimension can be separately approximated by the Fourier HDMR-HC approximation in each subdomain. The proposed method allows for stable large time-steps and a relatively small number of nodes with satisfactory accuracy. The numerical examples show that the proposed method is very attractive for simulating the high-dimensional SGEs.

Keywords

Sine-Gordon equations Meshless methods High dimensional model representation 

Notes

Acknowledgements

The authors X.X. and X.L. acknowledge support from the National Science Foundation (Grant No. CHE-1763198), and H.R. acknowledges support from the Templeton Foundation (Grant No. 52265).

References

  1. 1.
    E. Aero, A. Bulygin, Y. Pavlov, Solutions of the three-dimensional sine-Gordon equation. Theor. Math. Phys. 158, 313–319 (2009)Google Scholar
  2. 2.
    J. Argyris, M. Haase, An engineer’s guide to soliton phenomena: application of the finite element method. Comput. Methods Appl. Mech. Eng. 61, 71–122 (1987)Google Scholar
  3. 3.
    J. Argyris, M. Haase, J. Heinrich, Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)Google Scholar
  4. 4.
    Z. Asgari, S. Hosseini, Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods. Comput. Phys. Commun. 184, 565–572 (2013)Google Scholar
  5. 5.
    A. Barone, F. Esposito, C. Magee, A. Scott, Theory and applications of the sine-Gordon equation. La Rivista del Nuovo Cimento 1(2), 227–267 (1971)Google Scholar
  6. 6.
    E. Bour, Théorie de la déformation des surfaces. J. Ecole Imp. Polytech. 19, 1–48 (1862)Google Scholar
  7. 7.
    A. Bratsos, An explicit numerical scheme for the sine-Gordon equation in \(2+1\) dimensions. Appl. Numer. Anal. Comput. Math. 2, 189–211 (2005)Google Scholar
  8. 8.
    A. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 206, 251–277 (2007)Google Scholar
  9. 9.
    P. Christiansen, P. Lomdahl, Numercal solution of \(2+1\) dimensional sine-Gordon solitons. Phys. D 2, 482–494 (1981)Google Scholar
  10. 10.
    P. Christiansen, O. Olsen, On dynamical two-dimensional solutions to the sine-Gordon equation. Z. Angew. Math. Mech. 56, 30–31 (1979)Google Scholar
  11. 11.
    F. de la Hoz, F. Vadillo, Numerical simulation of the \(n\)-dimensional sine-Gordon equation via operational matrices. Comput. Phys. Commun. 183, 864–879 (2012)Google Scholar
  12. 12.
    M. Dehghan, A. Ghesmati, Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein–Gordon equation. Comput. Phys. Commun. 181(8), 1410–1418 (2010a)Google Scholar
  13. 13.
    M. Dehghan, A. Ghesmati, Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010b)Google Scholar
  14. 14.
    M. Dehghan, D. Mirzaei, The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation. Numer. Methods Partial Differ. Equ. 24, 1405–1415 (2008a)Google Scholar
  15. 15.
    M. Dehghan, D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation. Comput. Methods Appl. Mech. Eng. 197, 476–486 (2008b)Google Scholar
  16. 16.
    M. Dehghan, A. Shokri, A numerical method for one-dimensional nonlinear sine-Gordon equation collocation and radial basis functions. Numer. Methods Partial Differ. Equ. 24, 687–698 (2008a)Google Scholar
  17. 17.
    M. Dehghan, A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008b)Google Scholar
  18. 18.
    M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J. Comput. Appl. Math. 230(2), 400–410 (2009)Google Scholar
  19. 19.
    K. Djidjeli, W. Price, E. Twizell, Numerical solutions of a damped sine-Gordon equation in two space variables. J. Eng. Math. 29, 347–369 (1995)Google Scholar
  20. 20.
    P. Drazin, R. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989)Google Scholar
  21. 21.
    B. Efron, C. Stein, The jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)Google Scholar
  22. 22.
    Z. Feng, An approximate sine-Gordon equation and its traveling wave solution in \((n+1)\)-dimensional space. Appl. Math. Comput. 152, 597–610 (2004)Google Scholar
  23. 23.
    R. Fisher, Statistical methods for research workers (Genesis Publishing Pvt Ltd, 1925)Google Scholar
  24. 24.
    J. Frenkel, T. Kontorova, On the theory of plastic deformation and twinning. J. Phys. (USSR) 1, 137–149 (1939)Google Scholar
  25. 25.
    C. Gorria, Y. Gaididei, M. Soerensen, P. Christiansen, J. Caputo, Kink propagation and trapping in a two-dimensional curved Josephson junction. Phys. Rev. B 69, 1–10 (2004)Google Scholar
  26. 26.
    M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 26, 455–489 (2010)Google Scholar
  27. 27.
    M. Griebel, F. Kuo, I. Sloan, The smoothing effect of the ANOVA decomposition. J. Complex. 26, 523–551 (2010)Google Scholar
  28. 28.
    M. Griebel, F. Kuo, I. Sloan, The smoothing effect of integration in \(\mathbb{R}^d\) and the ANOVA decomposition. Math. Comput. 82(281), 383–400 (2013)Google Scholar
  29. 29.
    B. Guo, P. Rodriguez, L. Vazquez, Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18, 1–14 (1986)Google Scholar
  30. 30.
    R. Hirota, Exact three-soliton solution of the two-dimensional sine-Gordon equation. J. Phys. Soc. Jpn. 35, 15–66 (1973)Google Scholar
  31. 31.
    Z. Jiang, R. Wang, Numerical solution of one-dimensional sine-Gordon equation using high accuracy multiquadric quasi-interpolation. Appl. Math. Comput. 218(15), 7711–7716 (2012)Google Scholar
  32. 32.
    R. Jiwari, S. Pandit, R. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 218(13), 7279–7294 (2012a)Google Scholar
  33. 33.
    R. Jiwari, S. Pandit, R. Mittal, Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012b)Google Scholar
  34. 34.
    P. Kaliappan, M. Lakshmanan, Kadomtsev–Petviashvili and two-dimensional sine-Gordon equations: reduction to Painlevé transcendents. Phys. A: Math. Gen. 249, 1–23 (1979)Google Scholar
  35. 35.
    A. Karamanli, A. Mugan, Strong form meshless implementation of taylor series method. Appl. Math. Comput. 219, 9069–9080 (2013)Google Scholar
  36. 36.
    K. Kobayashi, M. Izutsu, Exact solution on the \(n\)-dimensional sine-Gordon equation. J. Phys. Soc. Jpn. 41(3), 1091–1092 (1976)Google Scholar
  37. 37.
    M. Lakestani, M. Dehghan, Collocation and finite difference-collocation methods for the solution of nonlinear Klein–Gordon equation. Comput. Phys. Commun. 181(8), 1392–1401 (2010)Google Scholar
  38. 38.
    G. Lamb, Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 43, 99–124 (1971)Google Scholar
  39. 39.
    G. Li, C. Rosenthal, H. Rabitz, High dimensional model representations. J. Phys. Chem. A 105(33), 7765–7777 (2001)Google Scholar
  40. 40.
    G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programing (Springer, Berlin, 2005)Google Scholar
  41. 41.
    S. Lou, H. Hu, X. Tang, Interactions among periodic waves and solitary waves of the \((n+1)\)-dimensional sine-Gordon field. Phys. Rev. E 71(3), 036,604 (2005)Google Scholar
  42. 42.
    X. Luo, Z. Lu, X. Xu, Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis. Reliab. Eng. Syst. Saf. 130, 140–148 (2014a)Google Scholar
  43. 43.
    X. Luo, Z. Lu, X. Xu, Reproducing kernel technique for high dimensional model representations (HDMR). Comput. Phys. Commun. 185(12), 3099–3108 (2014b)Google Scholar
  44. 44.
    X. Luo, X. Xu, H. Rabitz, On the fundamental conjecture of HDMR: a Fourier analysis approach. J. Math. Chem. 55, 632–660 (2017)Google Scholar
  45. 45.
    P. Minnhagen, Nonuniversal jumps and the Kosterlitz–Thouless transition. Phys. Rev. Lett. 54(21), 2351–2354 (1985)Google Scholar
  46. 46.
    P. Minnhagen, The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987)Google Scholar
  47. 47.
    D. Mirzaei, M. Dehghan, Implementation of meshless LBIE method to the 2D non-linear SG problem. Int. J. Numer. Methods Eng. 79(13), 1662–1682 (2009)Google Scholar
  48. 48.
    D. Mirzaei, M. Dehghan, Meshless local Petrov–Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J. Comput. Appl. Math. 233(10), 2737–2754 (2010)Google Scholar
  49. 49.
    A. Mohebbi, M. Dehghan, High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)Google Scholar
  50. 50.
    K. Nakajima, Y. Onodera, T. Nakamura, R. Sato, Numerical analysis of vortex motion on Josephson structures. J. Appl. Phys. 45, 4095–4099 (1974)Google Scholar
  51. 51.
    G. Ni, S. Lou, S. Chen, H. Lee, Two-dimensional Coulomb gas studied in the sine-Gordon formulation. Phys. Rev. B: Condens. Matter 41(10), 6947–6957 (1990)Google Scholar
  52. 52.
    B. Pekmen, M. Tezer-Sezgin, Differential quadrature solution of nonlinear Klein–Gordon and sine-Gordon equations. Comput. Phys. Commun. 183(8), 1702–1713 (2012)Google Scholar
  53. 53.
    M. Powell, Advanced in Numerical Analysis. Oxford Univercity Press, chap Theory of radial basis function approximation in 1990, 303–322 (1992)Google Scholar
  54. 54.
    H. Rabitz, Ö. Alis, Sensitivity analysis, John Wiley and Sons Publishers, chap Managing the tyranny of parameters in mathematical modeling of physical systems, pp 199–223 (2000)Google Scholar
  55. 55.
    H. Rabitz, Ö. Alis, General foundations of high-dimensional model representations. J. Math. Chem. 25(2–3), 197–233 (1999)Google Scholar
  56. 56.
    H. Rabitz, Ö. Alis, J. Shorter, K. Shim, Efficient input–output model representations. Comput. Phys. Commun. 117(1–2), 11–20 (1998)Google Scholar
  57. 57.
    A. Scott, F. Chu, D. McLaughlin, The soliton: a new concept in applied science. Proc. IEEE 61(10), 1443–1483 (1973)Google Scholar
  58. 58.
    W. Shao, X. Wu, The numerical solution of the nonlinear Klein–Gordon and Sine-Gordon equations using the Chebyshev tau meshless method. Comput. Phys. Commun. 185, 1399–1409 (2014)Google Scholar
  59. 59.
    Q. Sheng, A. Khaliq, D. Voss, Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme. Math. Comput. Simul. 68, 355–373 (2005)Google Scholar
  60. 60.
    I. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)Google Scholar
  61. 61.
    C. Stone, The use of polynomial splines and their tensor products in multivariate function estimation. Ann. Stat. 22(1), 118–171 (1994)Google Scholar
  62. 62.
    A. Taleei, M. Dehghan, A pseudo-spectral method that uses an overlapping multidomain technique for the numerical solution of sine-Gordon equation in one and two spatial dimensions. Math. Methods Appl. Sci. 37(13), 1909–1923 (2014)Google Scholar
  63. 63.
    H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–396 (1998)Google Scholar
  64. 64.
    J. Xin, Modeling light bullets with the two-dimensional sine-Gordon equation. Physica D 135, 345–368 (2000)Google Scholar
  65. 65.
    X. Xu, Z. Lu, X. Luo, A numerical meshless method of soliton-like structures model via an optimal sampling density based kernel interpolation. Comput. Phys. Commun. 192, 12–22 (2015)Google Scholar
  66. 66.
    J. Zagrodzinsky, Particular solutions of the sine-gordon equation in \(2 + 1\) dimensions. Phys. Lett. A 72, 284–286 (1979)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.School of Management and EngineeringNanjing UniversityNanjingChina
  3. 3.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations