Chaotic behavior of the CML model with respect to the state and coupling parameters

  • Marek LampartEmail author
  • Tomáš Martinovič
Brief Communication


The main aim of this paper is the study of dynamical properties of the Laplacian-type coupled map lattice induced by the logistic family on a periodic lattice depending on two parameters: the state parameter of the logistic map and the coupling constant. For this purpose, tools like maximal Lyapunov exponent, approximate entropy, and the 0–1 test for chaos are introduced and applied to numerical simulations performed using a supercomputer.


CML model Maximal Lyapunov exponent Approximate entropy The 0–1 test for chaos 

Mathematics Subject Classification

37N99 65P20 34D08 37M25 



This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) Project “IT4Innovations excellence in science—LQ1602“; by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations Project “IT4Innovations National Supercomputing Center—LM2015070“; by SGC Grant No. SP2019/125 “Qualification and quantification tools application to dynamical systems”, VŠB - Technical University of Ostrava, Czech Republic, Grant of SGS No. SP2019/84, VŠB - Technical University of Ostrava, Czech Republic.


  1. 1.
    A. Adamatzky, J. Holley, L. Bull, C.B. De Lacy, On computing in fine-grained compartmentalised Belousov–Zhabotinsky medium. Chaos Solitons Fractals 44(10), 779–790 (2011)CrossRefGoogle Scholar
  2. 2.
    K.I. Agladze, V.I. Krinsky, A.M. Pertsov, Chaos in the non-stirred Belousov Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308, 834–835 (1984)CrossRefGoogle Scholar
  3. 3.
    L.A. Bunimovich, E.A. Carlen, On the problem of stability in lattice dynamical systems. J. Differ. Equ. 123, 213–229 (1995)CrossRefGoogle Scholar
  4. 4.
    R. Carvalho, B. Fernandez, R.V. Mendes, From synchronization to multistability in two coupled quadratic maps. Phys. Lett. Sect. A Gen. At. Solid State Phys. 285, 327–338 (2001)Google Scholar
  5. 5.
    P. Collet, J.P. Eckmann, Iterated maps on the interval as dynamical systems (Birkhaser, Boston, 1980)Google Scholar
  6. 6.
    M. Ding, W. Yang, Stability of synchronous chaos and on–off intermittency in coupled map lattices. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 56, 4009 (1997)Google Scholar
  7. 7.
    V.A. Dobrynskii, Critical sets and properties of endomorphisms built by coupling of two identical quadratic mappings. J. Dyn. Control Syst. 5(2), 227–254 (1999)CrossRefGoogle Scholar
  8. 8.
    B. Fernandez, M. Hang, Coupling two unimodal maps with simple kneading sequences. Ergod. Theory Dyn. Syst. 24(1), 107–125 (2004)CrossRefGoogle Scholar
  9. 9.
    G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)CrossRefGoogle Scholar
  10. 10.
    G.A. Gottwald, I. Melbourne, On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)CrossRefGoogle Scholar
  11. 11.
    J.L.G. Guirao, M. Lampart, Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48(1), 66–71 (2010)CrossRefGoogle Scholar
  12. 12.
    J.L.G. Guirao, M. Lampart, Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48(1), 159–164 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Gyorgyi, R.J. Field, Z. Noszticzius, W.D. McCormick, H.L. Swinney, Confirmation of high flow rate chaos in the Belousov–Zhabotinsky reaction. J. Phys. Chem. A 96, 1228–1233 (1992)CrossRefGoogle Scholar
  14. 14.
    G. He, A. Lambert, R. Lima, Wavelike patterns in one-dimensional coupled map lattices. Physica D Nonlinear Phenom. 103(1–4), 404–411 (1997)CrossRefGoogle Scholar
  15. 15.
    J.F. Heagy, N. Platt, S.M. Hammel, Characterization of on–off intermittency. Physica D Nonlinear Phenom. 49, 1140 (1994)Google Scholar
  16. 16.
    J. Jost, M.P. Joy, Spectral properties and synchronization in coupled map lattices. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 65, 16201 (2002)Google Scholar
  17. 17.
    K. Kaneko, Theory and applications of coupled map lattices (Wiley, New York, 1993)Google Scholar
  18. 18.
    K. Kaneko, Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermittency. Physica D Nonlinear Phenom. 34, 1–41 (1989)CrossRefGoogle Scholar
  19. 19.
    K. Kaneko, Overview of coupled map lattices. Chaos Interdiscip. J. Nonlinear Sci. 2, 279–282 (1992)CrossRefGoogle Scholar
  20. 20.
    H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994)CrossRefGoogle Scholar
  21. 21.
    F. Khellat, A. Ghaderi, N. Vasegh, iYorke chaos and synchronous chaos in a globally nonlocal coupled map lattice. Chaos Solitons Fractals 44(11), 934–939 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Lampart, T. Martinovic, A survey of tools detecting the dynamical properties of one-dimensional families. Adv. Electr. Electron. Eng. 15(2), 304–313 (2017)Google Scholar
  23. 23.
    M. Lampart, P. Oprocha, Chaotic sub-dynamics in coupled logistic maps. Physica D Nonlinear Phenom. 335, 45–53 (2016)CrossRefGoogle Scholar
  24. 24.
    A.L. Lloyd, The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173(3), 217–230 (1995)CrossRefGoogle Scholar
  25. 25.
    W.W. Lin, C.C. Peng, C.S. Wang, Synchronization in coupled map lattices with periodic boundary condition. Int. J. Bifurc. Chaos 9(8), 1635–1652 (1999)CrossRefGoogle Scholar
  26. 26.
    T. Martinovic, Chaos 01: 0–1 test for chaos. R package version 1.1.1. (2018).
  27. 27.
    O.V. Noskov, A.D. Karavaev, V.P. Kazakov, S.I. Spivak, Chaos in a simulated Belousov–Zhabotinsky reaction. Mendeleev Commun. 4(3), 82–85 (1994)CrossRefGoogle Scholar
  28. 28.
    Y. Oono, M. Kohmoto, Discrete model of chemical turbulence. Phys. Rev. Lett. 55(27), 2927–2931 (1985)CrossRefGoogle Scholar
  29. 29.
    S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88(6), 2297–2301 (1991)CrossRefGoogle Scholar
  30. 30.
    N. Platt, E.A. Spiegel, C. Tresser, On-off intermittency: a mechanism for bursting. Phys. Rev. Lett. 70(3), 279–282 (1993)CrossRefGoogle Scholar
  31. 31.
    R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).
  32. 32.
    N. Romero, J. Silva, R. Vivas, On a coupled logistic map with large strength. J. Math. Anal. Appl. 415(1), 346–357 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Sabeti, S. Katebi, R. Boostani, Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47(3), 263–274 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Vandermeer, A. Kaufmann, Models of coupled population oscillators using 1-D maps. J. Math. Biol. 37, 178–202 (1998)CrossRefGoogle Scholar
  35. 35.
    R.L. Viana, C. Grebogi, S.E. Pinto, S.R. Lopes, A.M. Batista, J. Kurths, Bubbling bifurcation: loss of synchronization and shadowing breakdown in complex systems. Physica D Nonlinear Phenom. 206, 94–108 (2005)CrossRefGoogle Scholar
  36. 36.
    F.H. Willeboordse, K. Kaneko, Bifurcations and spatial chaos in an open flow model. Phys. Rev. Lett. 73, 533–536 (1994)CrossRefGoogle Scholar
  37. 37.
    F.H. Willeboordse, Timedelayed map as a model for open fluid flow. Chaos Interdiscip. J. Nonlinear Sci. 2(3), 423–426 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IT4InnovationsVŠB - Technical University of OstravaOstravaCzech Republic
  2. 2.Department of Applied MathematicsVŠB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations