Advertisement

THDRK methods with vanished phase-lag and its first derivative for the Schrödinger equation

  • Yanping Yang
  • Yonglei FangEmail author
  • Kaimin WangEmail author
  • Xiong You
Original Paper
  • 22 Downloads

Abstract

Two new optimized three-derivative Runge–Kutta type methods with vanishing phase-lag and its first derivative for the numerical integration of Schrödinger equation are derived in this paper. We present the error analysis in terms of the asymptotic expressions of the local errors. Numerical results are reported to show the efficiency and robustness of the new methods for the numerical integration of the Schrödinger equation with the Woods–Saxon potential.

Keywords

Three-derivative Runge–Kutta methods Phase-lag error Schrödinger equation Error analysis 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their careful review and for your invaluable suggestions which helped very much to improve the quality of the manuscript. This research was partially supported by the National Natural Science Foundation of China (No. 11571302),the project of Shandong Province higher Educational Science and Technology Program (Nos. KJ2018BAI031, J17KA190), the NSF of Shandong Province (No. ZR2018MA024) and the Jiangsu Provincial Natural Science Foundation (No. BK20171370).

References

  1. 1.
    T.E. Simos, J. Vigo-Aguiar, A symmetric high order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. 12(7), 1035–1042 (2001)CrossRefGoogle Scholar
  2. 2.
    Y.L. Fang, X. You, Q.H. Ming, Exponentially fitted two-derivative Runge–Kutta methods for the Schrödinger equation. Int. J. Mod. Phys. C 24(10), 1350073 (2013)CrossRefGoogle Scholar
  3. 3.
    T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)CrossRefGoogle Scholar
  4. 4.
    H. Van de Vyver, An embedded phase-fitted modified Runge–Kutta method for the numerical integration of the radial Schrödinger equation. Phys. Lett. A 352(4–5), 278–285 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Vigo-Aguiar, J. Martin-Vaquero, R. Criado, On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175(1), 183–194 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quant. Chem. 103(3), 278–290 (2005)CrossRefGoogle Scholar
  7. 7.
    B. Wang, Triangular splitting implementation of RKN-type Fourier collocation methods for second-order differential equations. Math. Methods Appl. Sci. 41(1–2), 1998–2011 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Wang, A. Iserles, X. Wu, Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Wang, F. Meng, Y. Fang, Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Wang, T. Li, X. Wu, Arbitrary-order functionally fitted energy-diminishing methods for gradient systems. Appl. Math. Lett. 83, 130–139 (2018)CrossRefGoogle Scholar
  11. 11.
    B. Wang, X. Wu, F. Meng, Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Wang, H. Yang, Y. Fang, Sixth order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54(1), 117–140 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Wang, X. Wu, F. Meng, Y. Fang, Exponential Fourier collocation methods for solving first-order differential equations. J. Comput. Math. 35(6), 711–736 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Wang, X. Wu, The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations. IMA J. Numer. Anal. (2018)  https://doi.org/10.1093/imanum/dry047
  15. 15.
    J. Martin-Vaquero, J. Vigo-Aguiar, Exponential fitting BDF algorithms: Explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Natesan, J. Jayakumar, J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers. J. Comput. Appl. Math. 158(1), 121–134 (2003)CrossRefGoogle Scholar
  17. 17.
    T.E. Simos, J. Vigo-Aguiar, An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Comput. Phys. Commun. 140(3), 358–365 (2001)CrossRefGoogle Scholar
  18. 18.
    J. Martin-Vaquero, J. Vigo-Aguiar, On the numerical solution of the heat conduction equations subject to nonlocal conditions. Appl. Numer. Math. 59(10), 2507–2514 (2009)CrossRefGoogle Scholar
  19. 19.
    T.E. Simos, An embedded Runge–Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 11(6), 1115–1133 (2000)CrossRefGoogle Scholar
  20. 20.
    J. Vigo-Aguiar, T.E. Simos, J.M. Ferrandiz, Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proceedings of the royal society of london series A-Math. Phys. Eng. Sci. 460(2042), 561–567 (2004)Google Scholar
  21. 21.
    J. Vigo-Aguiar, J.C. Reboredo, H. Ramos, Topics of contemporary computational mathematics. Int. J. Comput. Math. 89(8), 265–267 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Vigo-Aguiar, J.A. López-Ramos, Applications of computational mathematics in science and engineering. Int. J. Comput. Math. 88(9), 1805–1807 (2011)CrossRefGoogle Scholar
  23. 23.
    F.G. Alonso, J. Reyes, J.M. Ferrándiz, J. Vigo-Aguiar, Multistep numerical methods for the integration of oscillatory problems in several frequencies. Adv. Eng. Soft. 40(8), 543–553 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Vigo-Aguiar, J.M. Vaquero, H. Ramos, Exponential fitting BDF-Runge–Kutta algorithms. Comput. Phys. Commun 178(1), 15–34 (2008)CrossRefGoogle Scholar
  25. 25.
    I. Alolyan, T.E. Simos, High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)CrossRefGoogle Scholar
  26. 26.
    I. Alolyan, T.E. Simos, Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)CrossRefGoogle Scholar
  27. 27.
    I. Alolyan, T.E. Simos, A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schröinger equation. J. Math. Chem. 49(3), 711–764 (2011)CrossRefGoogle Scholar
  28. 28.
    I. Alolyan, T.E. Simos, A new hybrid two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 50(9), 2351–2373 (2012)CrossRefGoogle Scholar
  29. 29.
    Z.A. Anastassi, D.S. Vlachos, T.E. Simos, A family of Runge–Kutta methods with zero phase-lag and derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 46, 1158–1171 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.L. Fang, X. You, New optimized two-derivative Runge–Kutta type methods for solving the radial Schrödinger equation. J. Math. Chem. 52(1), 240–254 (2014)CrossRefGoogle Scholar
  31. 31.
    W.H. Enright, Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal 11, 321–331 (1974)CrossRefGoogle Scholar
  32. 32.
    E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Springer, Berlin, 1993)Google Scholar
  33. 33.
    R.P.K. Chan, A.Y.J. Tsai, On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Chen, Z. Qiu, J. Li, X. You, Two-derivative Runge–Kutta-Nyström methods for second-order ordinary differential equations. Numer. Algorithms 70, 897–927 (2015)CrossRefGoogle Scholar
  35. 35.
    J.O. Ehigie, Manman Zou, X. Xilin Hou, X. You, On modified TDRKN methods for second-order systems of differential equations. Int. J. Comput. Math. 95(1), 159–173 (2018)CrossRefGoogle Scholar
  36. 36.
    M.Ö. Turacı, T. Öziş, Derivation of three derivative Runge–Kutta methods. Numer. Algorithms 74(1), 247–265 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods (Wiley, Hoboken, 1987)Google Scholar
  38. 38.
    X. You, Limit-cycle-preserving simulation of gene regulatory oscillators. Discrete Dyn. Nat. Soc. 673296, 22 (2012)Google Scholar
  39. 39.
    LGr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19(1), 23–27 (1980)CrossRefGoogle Scholar
  40. 40.
    H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)CrossRefGoogle Scholar
  41. 41.
    H. Van de Vyver, Modified explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 171(2), 1025–1036 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZaozhuang UniversityZaozhuangPeople’s Republic of China
  2. 2.College of SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations