Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 2, pp 655–689 | Cite as

Computational multinomial combinatorics for colorings of 5D-hypercubes for all irreducible representations and applications

  • Krishnan BalasubramanianEmail author
Original Paper
  • 19 Downloads

Abstract

We have developed computational multinomial techniques for colorings of 5D-hypercubes for all irreducible representations of the five-dimensional hyperoctahedral group up to 10 different color types. We have used the computed character tables of the 5D-hyperoctahedral group of order 3840 with 36 irreducible representations to obtain multinomial generating functions for coloring combinatorics for all irreducible representations. Explicit tables are provided for coloring tesseracts of 5D-hypercubes up to 10 colors for all 36 irreducible representations, 32 vertices and 80 faces of the 5D-hypercube. A number of chemical applications to non-rigid molecules and weakly-bound clusters such as (H2O)5, (Cl2O)5, (OF2)5, and non-rigid pseudo-rotating pentacoordinated complexes such as Co(H2O) 5 3+ as well as to genetic regulatory networks are outlined.

Keywords

5D-hypercube Combinatorial enumerations Character table Coloring 5D-hypercube Nuclear spin statistics Generalized Pólya theory 

References

  1. 1.
    A.T. Balaban, Enumerating isomers, in Chemical Graph Theory, ed. by D. Bonchev, D.H. Rouvray (Gordon & Beach Publishers, New York, 1991)Google Scholar
  2. 2.
    G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds (Springer, New York, 1987)CrossRefGoogle Scholar
  3. 3.
    N.G. de Bruijn, Color patterns that are invariant under permutation of colors. J. Comb. Theory 2, 418–421 (1967)CrossRefGoogle Scholar
  4. 4.
    N.G. de Bruijn, Enumeration of tree shaped molecules, in Recent Progress in Combinatorics, ed. by W.D. Tutte (Academic, New York, 1969), pp. 59–68Google Scholar
  5. 5.
    S.G. Williamson, Symmetry operators of Kranz products. J. Comb. Theory 11, 122–138 (1971)CrossRefGoogle Scholar
  6. 6.
    K. Balasubramanian, Applications of combinatorics and graph theory to quantum chemistry and spectroscopy. Chem. Rev. 85, 599–618 (1985)CrossRefGoogle Scholar
  7. 7.
    K. Balasubramanian, Symmetry groups of nonrigid molecules as generalized wreath-products and their representations. J. Chem. Phys. 72, 665–677 (1980)CrossRefGoogle Scholar
  8. 8.
    K. Balasubramanian, Relativistic double group spinor representations of nonrigid molecules. J. Chem. Phys. 120, 5524–5535 (2004)CrossRefGoogle Scholar
  9. 9.
    R.B. King, Topological aspects of chemically significant polyhedra. J. Math. Chem. 7, 51–68 (1991)CrossRefGoogle Scholar
  10. 10.
    R. Wallace, Spontaneous symmetry breaking in a non-rigid molecule approach to intrinsically disordered proteins. Mol. BioSyst. 8(1), 374–377 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Wallace, Tools for the future: hidden Symmetries, Computational Psychiatry (Springer, Cham, 2017), pp. 153–165CrossRefGoogle Scholar
  12. 12.
    C.J.O. Reichhardt, K.E. Bassler, Canalization and symmetry in Boolean models for genetic regulatory networks. J. Phys. A Math. Theor. 40, 4339 (2007)CrossRefGoogle Scholar
  13. 13.
    M.R. Darafsheh, Y. Farjami, A.R. Ashrafi, The non-rigid group of tetraamine platinum (II) as a wreath product. Bull. Chem. Soc. Jpn. 78(6), 996–1000 (2005)CrossRefGoogle Scholar
  14. 14.
    M.R. Darafsheh, Y. Farjami, A.R. Ashrafi, Computing the full non-rigid group of tetranitrocubane and octanitrocubane using wreath product. Match Commun. Math. Comput. Chem 54, 53 (2005)Google Scholar
  15. 15.
    R. Foote, G. Mirchandani, D. Rockmore, A two-dimensional wreath product transforms. J. Symb. Comput. 37, 187–207 (2004)CrossRefGoogle Scholar
  16. 16.
    F.P. Temme, Natural embedding of J ↓A5 group in SU(m < n) x S12 NMR spin algebras. 1. Roles of model l n permutational modules and their related Kostka Al(l)s in the NMR of (11BH)2-12, (11BD)2-12 exo-cage clusters. Mol. Phys. 85, 883–906 (1995)CrossRefGoogle Scholar
  17. 17.
    K. Balasubramanian, A generalized wreath product method for the enumeration of stereo and position isomers of polysubstituted organic compounds. Theor. Chim. Acta. 51, 37–51 (1979)CrossRefGoogle Scholar
  18. 18.
    K. Balasubramanian, Symmetry simplifications of space types in configuration-interaction induced by orbital degeneracy. Int. J. Quantum Chem. 20, 1255–1271 (1981)CrossRefGoogle Scholar
  19. 19.
    K. Balasubramanian, Enumeration of the isomers of the gallium arsenide clusters (GamAsn). Chem. Phys. Lett. 150(1–2), 71–77 (1988)CrossRefGoogle Scholar
  20. 20.
    K. Balasubramanian, Nuclear-spin statistics of C60, C60H60 and C60D60. Chem. Phys. Lett. 183, 292–296 (1991)CrossRefGoogle Scholar
  21. 21.
    K. Balasubramanian, Group theoretical analysis of vibrational modes and rovibronic levels of extended aromatic C48N12 azafullerene. Chem. Phys. Lett. 391, 64–68 (2004)CrossRefGoogle Scholar
  22. 22.
    K. Balasubramanian, Group-theory and nuclear-spin statistics of weakly-bound (H2O)N, (NH3)N, (CH4)N, and NH4 +(NH3)N. J. Chem. Phys. 95, 8273–8286 (1991)CrossRefGoogle Scholar
  23. 23.
    K. Balasubramanian, Generators of the character tables of generalized wreath product groups. Theor. Chim. Acta. 78, 31–43 (1990)CrossRefGoogle Scholar
  24. 24.
    X.Y. Liu, K. Balasubramanian, Computer generation of character tables of generalized wreath product groups. J. Comput. Chem. 11, 589–602 (1990)CrossRefGoogle Scholar
  25. 25.
    R.J. Saykally, D.J. Wales, Structures of cage, prism and book isomers of water hexamer. Science 336, 814–815 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Balasubramanian, Multinomial combinatorial group representations of the octahedral and cubic symmetries. J. Math. Chem. 35, 345–365 (2004)CrossRefGoogle Scholar
  27. 27.
    R. Carbó-Dorca, J Math Chem. (2018) 1–4.  https://doi.org/10.1007/s10910-018-0866-9
  28. 28.
    L. Li, M. Degardin, T. Lavergne, D.A. Malshey, K. Dhami, P. Ordoukhanian, F.E. Romesberg, J. Am. Chem. Soc. 136, 826–829 (2014).  https://doi.org/10.1021/ja408814g CrossRefGoogle Scholar
  29. 29.
    R. Carbó-Dorca, J. Math. Chem. 54, 1213 (2016).  https://doi.org/10.1007/s10910-016-0628-5 CrossRefGoogle Scholar
  30. 30.
    R. Carbó-Dorca, J Math Chem. (2018).  https://doi.org/10.1007/s10910-018-0865-x
  31. 31.
    R. Carbó-Dorca, J. Math. Chem. 54, 657 (2016).  https://doi.org/10.1007/s10910-015-0585-4 CrossRefGoogle Scholar
  32. 32.
    R. Carbó-Dorca, J. Math. Chem. 55, 914 (2017)CrossRefGoogle Scholar
  33. 33.
    A.A. Gowen, C.P. O’Donnella, P.J. Cullenb, S.E.J. Bellc, Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur. J. Pharm. Biopharm. 69, 10–22 (2008)CrossRefGoogle Scholar
  34. 34.
    P.G. Mezey, J. Math. Chem. 11, 27 (1992)CrossRefGoogle Scholar
  35. 35.
    P.G. Mezey, P. Warburton, E. Jako, Z. Szekeres, J. Math. Chem. 30, 375 (2002)CrossRefGoogle Scholar
  36. 36.
    P.G. Mezey, J. Math. Chem. 45, 1 (2009)CrossRefGoogle Scholar
  37. 37.
    P.G. Mezey, J. Chem. Inf. Comput. Sci. 32, 650 (1992)CrossRefGoogle Scholar
  38. 38.
    F.H. Kaatz, A. Bultheel, J. Math. Chem. 54, 33 (2016)CrossRefGoogle Scholar
  39. 39.
    P.W.H. Lemmis, Pólya Theory Hypercubes Geom. Dedic. 64, 145–155 (1997)CrossRefGoogle Scholar
  40. 40.
    W. Y. C. Chen and P. L. Guo, Equivalence Classes of Full-Dimensional 0/1-Polytopes with Many Vertices (2011). https://arxiv.org/pdf/1101.0410.pdf
  41. 41.
    W.Y.C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6, 353–362 (1993)CrossRefGoogle Scholar
  42. 42.
    M.A. Harrison, R.G. High, On the cycle index of a product of permutation group. J. Combin. Theory 4, 277–299 (1968)CrossRefGoogle Scholar
  43. 43.
    F. Harary, E.M. Palmer, Graphical Enumeration (Academic press, New York, NY, 1973)Google Scholar
  44. 44.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)Google Scholar
  45. 45.
    G. Pólya, Sur les types des propositions composées. J. Symb. Logic 5, 98–103 (1940)CrossRefGoogle Scholar
  46. 46.
    K. Balasubramanian, A method for nuclear-spin statistics in molecular spectroscopy. J. Chem. Phys. 74, 6824–6829 (1981)CrossRefGoogle Scholar
  47. 47.
    H.S.M. Coxeter, Regular Polytopes (Dover Publications, New York, 1973)Google Scholar
  48. 48.
    T. Ruen, https://commons.wikimedia.org/wiki/File:5-cube_t024.svgfree. public domain work available to anyone to use for any purpose
  49. 49.
    K. Balasubramanian, J. Math. Chem. 58, 2703–2723 (2018)Google Scholar
  50. 50.
    M. Liu, K.E. Bassler, Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes. J. Phys. A Math. Theor. 44, 045101 (2010)CrossRefGoogle Scholar
  51. 51.
    K. Balasubramanian, Nonrigid group theory, tunneling splittings, and nuclear spin statistics of water pentamer:(H2O)5.”. J. Phys. Chem. A 108, 5527–5536 (2004)CrossRefGoogle Scholar
  52. 52.
    D. Wang, A. Fujii, Structures of protonated hydrogen sulfide clusters, H + (H2S) n, highlighting the nature of sulfur-centered intermolecular interactions. Phys. Chem. Chem. Phys. 19, 2036–2043 (2017)CrossRefGoogle Scholar
  53. 53.
    J.M. Price, M.W. Crofton, Y.T. Lee, Vibrational spectroscopy of the ammoniated ammonium ions NH4 + (NH3) n (n = 1-10). J. Phys. Chem. 95, 2182–2195 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations