Advertisement

An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences

  • 204 Accesses

  • 1 Citations

Abstract

In this work, we investigate numerically a nonlinear wave equation with fractional derivatives of the Riesz type in space. As opposed to previously published papers which employed fractional centered differences, the present approach is based on the use of weighted and shifted Grünwald difference operators. The mathematical model has an associated energy function which is preserved under suitable parameter conditions. In this manuscript, we propose a discrete energy function that estimates the continuous counterpart and which is preserved under the same conditions. As some of the main result of this work, we show that the method is stable and second-order convergent. Moreover, we establish that the technique is quadratically consistent, and we prove the existence and uniqueness of solutions of the numerical model for arbitrary initial conditions. Some numerical results are provided in order to confirm the quadratic order of convergence of the method.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. 1.

    M. Abbaszade, M. Mohebbi, Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry. Iran. J. Math. Chem. 3(2), 195–220 (2012)

  2. 2.

    G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

  3. 3.

    G. Alfimov, T. Pierantozzi, L. Vázquez, Numerical study of a fractional sine-Gordon equation. Fract. Differ. Appl. 4, 153–162 (2004)

  4. 4.

    O. Belhamiti, B. Absar, A numerical study of fractional order reverse osmosis desalination model using legendre wavelet approximation. Iran. J. Math. Chem. 8(4), 345–364 (2017)

  5. 5.

    G. Ben-Yu, P.J. Pascual, M.J. Rodriguez, L. Vázquez, Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18(1), 1–14 (1986)

  6. 6.

    F.P. Benetti, A.C. Ribeiro-Teixeira, R. Pakter, Y. Levin, Nonequilibrium stationary states of 3d self-gravitating systems. Phys. Rev. Lett. 113(10), 100602 (2014)

  7. 7.

    G.N.C. Beukam, J.P. Nguenang, A. Trombettoni, T. Dauxois, R. Khomeriki, S. Ruffo, Fermi-pasta-ulam chains with harmonic and anharmonic long-range interactions. Commun. Nonlinear Sci. Numer. Simul. 60(1), 115–127 (2018)

  8. 8.

    A. Bhrawy, M. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput. Math. Appl. 73(6), 1100–1117 (2017)

  9. 9.

    A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3), 57–159 (2009)

  10. 10.

    C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

  11. 11.

    H. Christodoulidi, T. Bountis, L. Drossos, Numerical integration of variational equations for Hamiltonian systems with long range interactions. Appl. Numer. Math. 104, 158–165 (2016)

  12. 12.

    H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, Dynamics and statistics of the Fermi–Pasta–Ulam \(\beta \)-model with different ranges of particle interactions. J. Stat. Mech. Theory Exp. 2016(12), 123206 (2016)

  13. 13.

    H. Christodoulidi, C. Tsallis, T. Bountis, Fermi–Pasta–Ulam model with long-range interactions: dynamics and thermostatistics. Europhys. Lett. 108(4), 40006 (2014)

  14. 14.

    A. Coronel-Escamilla, J. Gómez-Aguilar, E. Alvarado-Méndez, G. Guerrero-Ramírez, R. Escobar-Jiménez, Fractional dynamics of charged particles in magnetic fields. Int. J. Mod. Phys. C 27(08), 1650084 (2016)

  15. 15.

    K. Diethelm, A.D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, in Scientific Computing in Chemical Engineering II, ed. by F. Keil, W. Mackens, H. Voss, J. Werther (Springer, 1999), pp. 217–224

  16. 16.

    Z. Fei, L. Vázquez, Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45(1), 17–30 (1991)

  17. 17.

    G.S. Frederico, D.F. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

  18. 18.

    A. Friedman, Foundations of Modern Analysis (Courier Corporation, New York, 1970)

  19. 19.

    D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1), 37–57 (2001)

  20. 20.

    D. Furihata, T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations (CRC Press, New York, 2010)

  21. 21.

    V. Gafiychuk, B.Y. Datsko, Pattern formation in a fractional reaction-diffusion system. Physica A Stat. Mech. Appl. 365(2), 300–306 (2006)

  22. 22.

    E. Kharazmi, M. Zayernouri, G.E. Karniadakis, A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

  23. 23.

    N. Korabel, G.M. Zaslavsky, V.E. Tarasov, Coupled oscillators with power–law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1405–1417 (2007)

  24. 24.

    N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

  25. 25.

    I. Latella, A. Pérez-Madrid, A. Campa, L. Casetti, S. Ruffo, Long-range interacting systems in the unconstrained ensemble. Phys. Rev. E 95(1), 012140 (2017)

  26. 26.

    S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

  27. 27.

    F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004)

  28. 28.

    F. Liu, M. Meerschaert, R. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

  29. 29.

    J.E. Macías-Díaz, A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 515–528 (2017)

  30. 30.

    J.E. Macías-Díaz, An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67–87 (2018)

  31. 31.

    J.E. Macías-Díaz, A.S. Hendy, R.H. De Staelen, A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. 224, 98–107 (2017)

  32. 32.

    T. Matsuo, D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)

  33. 33.

    A. Miele, J. Dekker, Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4(11), 1046–1057 (2008)

  34. 34.

    G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, Traveling solitons in long-range oscillator chains. J. Phys. A Math. Theor. 50(12), 12LT02 (2017)

  35. 35.

    K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

  36. 36.

    K. Pen-Yu, Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)

  37. 37.

    S. Shen, F. Liu, V. Anh, I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J. Appl. Math. 73(6), 850–872 (2008)

  38. 38.

    W. Strauss, L. Vazquez, Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

  39. 39.

    Y.F. Tang, L. Vázquez, F. Zhang, V. Pérez-García, Symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 32(5), 73–83 (1996)

  40. 40.

    V.E. Tarasov, Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. General 38(26), 5929 (2005)

  41. 41.

    V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. General 39(48), 14895 (2006)

  42. 42.

    V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006)

  43. 43.

    V.E. Tarasov, G.M. Zaslavsky, Conservation laws and Hamiltons equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860–1878 (2008)

  44. 44.

    W. Tian, H. Zhou, W. Deng, A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

  45. 45.

    S. Vong, P. Lyu, Z. Wang, A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66(2), 725–739 (2016)

  46. 46.

    P. Wang, C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

  47. 47.

    P. Wang, C. Huang, L. Zhao, Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. J. Comput. Appl. Math. 306, 231–247 (2016)

  48. 48.

    Q. Yang, F. Liu, I. Turner, Stability and convergence of an effective numerical method for the time-space fractional Fokker–Planck equation with a nonlinear source term. Int. J. Differ. Equ. 2010 (2010)

  49. 49.

    X. Zhao, Z.Z. Sun, Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62(3), 747–771 (2015)

  50. 50.

    P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

Download references

Acknowledgements

For the first author, this work was supported by Government of the Russian Federation Resolution 211 of March 16, 2013. The authors wish to thank the anonymous reviewers and the editor in charge of handling this paper for their suggestions and criticisms. Their comments helped substantially in improving the quality of this manuscript.

Author information

Correspondence to Jorge E. Macías-Díaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hendy, A.S., Macías-Díaz, J.E. An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences. J Math Chem 57, 1394–1412 (2019). https://doi.org/10.1007/s10910-018-0973-7

Download citation

Keywords

  • Fractional wave equation
  • Riesz space-fractional equations
  • Weighted and shifted Grünwald differences
  • Hamiltonian numerical model
  • Convergence and stability