Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 2, pp 494–515 | Cite as

New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems

  • Guiping Wang
  • T. E. SimosEmail author
Original Paper
  • 17 Downloads

Abstract

In the present paper and for the first time in the bibliography, we form a new multiple stages multistep complete in phase algorithm with meliorated properties. A detailed theoretical and computational study is also represented. The competence of the new algorithm is tested using systems of coupled differential equations of the Schrödinger type.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics subject classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)Google Scholar
  2. 2.
    K. Mu, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)Google Scholar
  3. 3.
    M. Liang, T.E. Simos, M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)Google Scholar
  4. 4.
    X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)Google Scholar
  5. 5.
    F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)Google Scholar
  6. 6.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)Google Scholar
  7. 7.
    F. Hui, T.E. Simos, Four stages symmetric two-step p-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)Google Scholar
  8. 8.
    W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)Google Scholar
  9. 9.
    L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation. Adv. Math. Phys. 2016, 20 (2016).  https://doi.org/10.1155/2016/8181927 Google Scholar
  10. 10.
    D.O.N.G. Ming, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filom. Filom. 31(15), 4999–5012 (2017)Google Scholar
  11. 11.
    R. Lin, T.E. Simos, A two-step method with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Open Phys. 14, 628–642 (2016)Google Scholar
  12. 12.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)Google Scholar
  13. 13.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)Google Scholar
  14. 14.
    J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)Google Scholar
  15. 15.
    L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)Google Scholar
  16. 16.
    V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)Google Scholar
  17. 17.
    K. Yan , T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)Google Scholar
  18. 18.
    J. Fang, C. Liu, T.E. Simos, A hybric finite difference pair with maximum phase and stability properties. J. Math. Chem. 56(2), 423–448 (2018)Google Scholar
  19. 19.
    J. Yao, T.E. Simos, New finite difference pair with optimized phase and stability properties. J. Math. Chem. 56(2), 449–476 (2018)Google Scholar
  20. 20.
    J. Zheng, C. Liu, T.E. Simos, A new two-step finite difference pair with optimal properties. J. Math. Chem. 56(3), 770–798 (2018)Google Scholar
  21. 21.
    X. Shi, T.E. Simos, New five-stages finite difference pair with optimized phase properties. J. Math. Chem. 56(4), 982–1010 (2018)Google Scholar
  22. 22.
    C. Liu, T.E. Simos, A five-stages symmetric method with improved phase properties. J. Math. Chem. 56(4), 1313–1338 (2018)Google Scholar
  23. 23.
    J. Yao, T.E. Simos, New five-stages two-step method with improved characteristics. J. Math. Chem. 56(6), 1567–1594 (2018)Google Scholar
  24. 24.
    K. Yan, T.E. Simos, New Runge-Kutta type symmetric two-step method with optimized characteristics. J. Math. Chem. 56(8), 2454–2484 (2018)Google Scholar
  25. 25.
    Z. Chen, C. Liu, T.E. Simos, New three-stages symmetric two step method with improved properties for second order initial/boundary value problems. J. Math. Chem. 56(9), 2591–2616 (2018)Google Scholar
  26. 26.
    R. Hao , T.E. Simos, New Runge–Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. J. Math. Chem. 56(10), 3014–3044Google Scholar
  27. 27.
    G.-H. Qiu, C. Liu , T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. (2018).  https://doi.org/10.1007/s10910-018-0940-3
  28. 28.
    V.N. Kovalnogov, R.V. Fedorov, A.A. Bondarenko, T.E. Simos, New hybrid two-step method with optimized phase and stability characteristics. J. Math. Chem. 56(8), 2302–2340 (2018)Google Scholar
  29. 29.
    V.N. Kovalnogov, R.V. Fedorov, T.E. Simos, New hybrid symmetric two step scheme with optimized characteristics for second order problems. J. Math. Chem. 56(9), 2816–2844 (2018)Google Scholar
  30. 30.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  31. 31.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  32. 32.
    A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)Google Scholar
  33. 33.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford Univ. Press, Oxford, 2011)Google Scholar
  34. 34.
    V.N. Kovalnogov, T.E. Simos, V.N. Kovalnogov, I.V. Shevchuk, Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies, in AIP Conference Proceedings, vol. 1863, p. 560099 (2017)Google Scholar
  35. 35.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations, in AIP Conference Proceedings, vol. 738, p. 480004 (2016)Google Scholar
  36. 36.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow, in AIP Conference Proceedings, vol. 1648, p. 850033 (2015)Google Scholar
  37. 37.
    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)Google Scholar
  38. 38.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)Google Scholar
  39. 39.
    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar
  40. 40.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)Google Scholar
  41. 41.
    Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)Google Scholar
  42. 42.
    A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)Google Scholar
  43. 43.
    J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)Google Scholar
  44. 44.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, Hoboken, 1991), pp. 104–107Google Scholar
  45. 45.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)Google Scholar
  46. 46.
    G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)Google Scholar
  47. 47.
    G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)Google Scholar
  48. 48.
  49. 49.
    T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)Google Scholar
  50. 50.
    T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)Google Scholar
  51. 51.
    T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), IX (2005)Google Scholar
  52. 52.
    T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)Google Scholar
  53. 53.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)Google Scholar
  54. 54.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)Google Scholar
  55. 55.
    A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)Google Scholar
  56. 56.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)Google Scholar
  57. 57.
    Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)Google Scholar
  58. 58.
    G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)Google Scholar
  59. 59.
    T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)Google Scholar
  60. 60.
    T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)Google Scholar
  61. 61.
    K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)Google Scholar
  62. 62.
    D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)Google Scholar
  63. 63.
    G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)Google Scholar
  64. 64.
    Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)Google Scholar
  65. 65.
    T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)Google Scholar
  66. 66.
    S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)Google Scholar
  67. 67.
    T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)Google Scholar
  68. 68.
    T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. 2012, 15 (2012).  https://doi.org/10.1155/2012/182536 Google Scholar
  69. 69.
    T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, 17 (2012).  https://doi.org/10.1155/2012/420387 Google Scholar
  70. 70.
    I. Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)Google Scholar
  71. 71.
    I. Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)Google Scholar
  72. 72.
    I. Alolyan, T.E. Simos, A high algebraic order multistage explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)Google Scholar
  73. 73.
    I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)Google Scholar
  74. 74.
    T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)Google Scholar
  75. 75.
    I. Alolyan, T.E. Simos, A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)Google Scholar
  76. 76.
    I. Alolyan, T.E. Simos, A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)Google Scholar
  77. 77.
    I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)Google Scholar
  78. 78.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)Google Scholar
  79. 79.
    T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)Google Scholar
  80. 80.
    T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)Google Scholar
  81. 81.
    D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)Google Scholar
  82. 82.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)Google Scholar
  83. 83.
    G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)Google Scholar
  84. 84.
    D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method, Abstr. Appl. Anal. (2013).  https://doi.org/10.1155/2013/910624
  85. 85.
    I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)Google Scholar
  86. 86.
    I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)Google Scholar
  87. 87.
    Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)Google Scholar
  88. 88.
    C. Tsitouras, I.T. Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)Google Scholar
  89. 89.
    T.E. Simos, C. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)Google Scholar
  90. 90.
    T.E. Simos, C. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)Google Scholar
  91. 91.
    D.B. Berg, T.E. Simos, C. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)Google Scholar
  92. 92.
    T.E. Simos, Ch. Tsitouras, Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)Google Scholar
  93. 93.
    C. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4), 168 (2018).  https://doi.org/10.1007/s00009-018-1216-7 Google Scholar
  94. 94.
    T.E. Simos, C. Tsitouras, I.T. Famelis, Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)Google Scholar
  95. 95.
    T.E. Simos , C. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x,y)\). Appl. Comput. Math. (in press)Google Scholar
  96. 96.
    A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)Google Scholar
  97. 97.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)Google Scholar
  98. 98.
    Z. Th Monovasilis, T.E.Simos Kalogiratou, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)Google Scholar
  99. 99.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)Google Scholar
  100. 100.
    T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)Google Scholar
  101. 101.
    T.E. Simos, Multistage symmetric two-step p-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)Google Scholar
  102. 102.
    Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)Google Scholar
  103. 103.
    H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)Google Scholar
  104. 104.
    T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)Google Scholar
  105. 105.
    A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 (2003)Google Scholar
  106. 106.
    T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)Google Scholar
  107. 107.
    T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)Google Scholar
  108. 108.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)Google Scholar
  109. 109.
    G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor–corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)Google Scholar
  110. 110.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)Google Scholar
  111. 111.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)Google Scholar
  112. 112.
    L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  113. 113.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)Google Scholar
  114. 114.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)Google Scholar
  115. 115.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)Google Scholar
  116. 116.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)Google Scholar
  117. 117.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)Google Scholar
  118. 118.
    M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)Google Scholar
  119. 119.
    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)Google Scholar
  120. 120.
    T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)Google Scholar
  121. 121.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)Google Scholar
  122. 122.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)Google Scholar
  123. 123.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)Google Scholar
  124. 124.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)Google Scholar
  125. 125.
    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)Google Scholar
  126. 126.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Information EngineeringChang’an universityXi’anPeople’s Republic of China
  2. 2.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Group of Modern Computational MethodsUral Federal UniversityEkaterinburgRussian Federation
  4. 4.Department of Automation EngineeringTEI of Sterea HellasPsachnaGreece
  5. 5.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  6. 6.AthensGreece

Personalised recommendations