Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 2, pp 465–472 | Cite as

Coriolis coupling effects in the dynamics of the D(2S) + NH(X3Σ) → N(4S) + HD(X1Σ g + ) reaction and its kinetic isotope effect

  • Cui-Xia YaoEmail author
  • Qi-Ying Xia
Original Paper
  • 28 Downloads

Abstract

The time dependent wave packet method was used to study the dynamics of the D + NH(vi= 0, ji= 0) → N+HD reaction and its isotopic variants, using the ab initio analytical potential energy surface (Zhai et al. in J Chem Phys 135:104314, 2011). The comparison of the calculated cross sections with and without Coriolis coupling (CC) showed that the inclusion of CC is important to achieve a quantitative description of the title reaction at high collision energies. Intermolecular isotopic effect was also examined in the cross sections. However, the CC and isotopic effects became inconspicuous when rate constants of the title reaction were only considered.

Keywords

Coriolis coupling Potential energy surface Isotopic effect Cross sections 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant No. 11747116).

References

  1. 1.
    J.A. Miller, C.T. Bowman, Prog. Energy Combust. Sci. 15, 287 (1989)CrossRefGoogle Scholar
  2. 2.
    J.E. Dove, W.S. Nip, Can. J. Chem. 57, 689 (1979)CrossRefGoogle Scholar
  3. 3.
    D.F. Davidson, K. Kohse-Hoinghaus, A.Y. Chang, R.K. Hanson, Int. J. Chem. Kinet. 22, 513 (1990)CrossRefGoogle Scholar
  4. 4.
    C. Morly, 18th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 23Google Scholar
  5. 5.
    D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 22, 843 (1990)CrossRefGoogle Scholar
  6. 6.
    S.W. Mayer, L. Schieler, J. Phys. Chem. A 72, 236 (1968)CrossRefGoogle Scholar
  7. 7.
    Z.F. Xu, D.C. Fang, X.Y. Fu, J. Phys. Chem. A 99, 5889 (1995)CrossRefGoogle Scholar
  8. 8.
    Z.F. Xu, D.C. Fang, X.Y. Fu, J. Phys. Chem. A 101, 4432 (1997)CrossRefGoogle Scholar
  9. 9.
    L.A. Poveda, A.J.C. Varandas, Phys. Chem. Chem. Phys. 7, 2867 (2005)CrossRefGoogle Scholar
  10. 10.
    L. Adam, W. Hack, H. Zhu, Z.W. Qu, R. Schinke, J. Chem. Phys. 122, 114301 (2005)CrossRefGoogle Scholar
  11. 11.
    S.W. Zhang, T.N. Truong, J. Chem. Phys. 113, 6149 (2000)CrossRefGoogle Scholar
  12. 12.
    R.Z. Pascual, G.C. Schatz, G. Lendvay, D. Troya, J. Phys. Chem. A 106, 4125 (2002)CrossRefGoogle Scholar
  13. 13.
    B.R. Han, H. Yang, Y.J. Zheng, A.J.C. Varandas, Chem. Phys. Lett. 493, 225 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, T.S. Chu, S.L. Dong, S.P. Yuan, A.P. Fu, Y.B. Duan, Chem. Phys. Lett. 28, 093403 (2011)Google Scholar
  15. 15.
    Z.W. Qu, H. Zhu, R. Schinke, L. Adam, W. Hack, J. Chem. Phys. 122, 204313 (2005)CrossRefGoogle Scholar
  16. 16.
    H.S. Zhai, K.L. Han, J. Chem. Phys. 135, 104314 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Adhikari, A.J.C. Varandas, Comput. Phys. Commun. 184, 270 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Ghosh, R. Sharma, S. Adhikari, A.J.C. Varandas, Phys. Chem. Chem. Phys. 20, 478 (2018)CrossRefGoogle Scholar
  19. 19.
    R.T. Pack, J. Chem. Phys. 60, 633 (1974)CrossRefGoogle Scholar
  20. 20.
    S. Ghosh, R. Sharma, S. Adhikari, A.J.C. Varandas, Chem. Phys. Lett. 675, 85 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Martinez, J.M. Lucas, X. Gimenez, A. Aguilar, M. Gonzalez, J. Chem. Phys. 124, 144301 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Ghosh, T. Sahoo, S. Adhikari, R. Sharma, A.J.C. Varandas, J. Phys. Chem. A 119, 12392 (2015)CrossRefGoogle Scholar
  23. 23.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Sahoo, S. Ghosh, S. Adhikari, R. Sharma, A.J.C. Varandas, J. Chem. Phys. 142, 024304 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Surucu, S. Akpinar, Chem. Phys. Lett. 531, 34 (2012)CrossRefGoogle Scholar
  26. 26.
    D.H. Zhang, S.Y. Lee, M. Baer, J. Chem. Phys. 112, 9802 (2000)CrossRefGoogle Scholar
  27. 27.
    J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)CrossRefGoogle Scholar
  28. 28.
    K.L. Yeh, D.Q. Xie, D.H. Zhang, S.Y. Lee, R. Schinke, J. Phys. Chem. A 107, 7215 (2003)CrossRefGoogle Scholar
  29. 29.
    B.H. Yang, H.T. Gao, K.L. Han, J.Z.H. Zhang, J. Chem. Phys. 113, 1434 (2000)CrossRefGoogle Scholar
  30. 30.
    T.X. Xie, Y. Zhang, M.Y. Zhao, K.L. Han, Phys. Chem. Chem. Phys. 5, 2034 (2003)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, T.X. Xie, K.L. Han, J.Z.H. Zhang, J. Chem. Phys. 119, 12921 (2003)CrossRefGoogle Scholar
  32. 32.
    D. Neuhasuer, M. Baer, J. Chem. Phys. 90, 4351 (1989)CrossRefGoogle Scholar
  33. 33.
    D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 101, 1146 (1994)CrossRefGoogle Scholar
  34. 34.
    T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringLinyi UniversityLinyiPeople’s Republic of China

Personalised recommendations