Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 1, pp 370–383 | Cite as

Formula for calculating the Wiener polarity index with applications to benzenoid graphs and phenylenes

  • Niko TratnikEmail author
Original Paper
  • 41 Downloads

Abstract

The Wiener polarity index of a graph is defined as the number of unordered pairs of vertices at distance three. In recent years, this topological index was extensively studied since it has many known applications in chemistry and also in network theory. In this paper, we generalize the result of Behmaram et al. (Appl. Math. Lett. 25:1510–1513, 2012) for calculating the Wiener polarity index of a graph. An important advantage of our generalization is that it can be used for graphs that contain 4-cycles and also for graphs whose different cycles have more than one common edge. In addition, using the main result a closed formula for the Wiener polarity index is derived for phenylenes and recalculated for catacondensed benzenoid graphs. The catacondensed benzenoid graphs and phenylenes attaining the extremal values with respect to the Wiener polarity index are also characterized.

Keywords

Wiener polarity index Benzenoid graph Phenylene First Zagreb index Second Zagreb index 

Mathematics Subject Classification

92E10 05C12 05C90 

Notes

Acknowledgements

The author was financially supported by the Slovenian Research Agency (research core funding Nos. P1-0297 and J1-9109).

References

  1. 1.
    A. Ali, Z. Du, M. Ali, A note on chemical trees with minimum Wiener polarity index. Appl. Math. Comput. 335, 231–236 (2018)Google Scholar
  2. 2.
    A.R. Ashrafi, A. Ghalavand, Ordering chemical trees by Wiener polarity index. Appl. Math. Comput. 313, 301–312 (2017)Google Scholar
  3. 3.
    A. Behmaram, H. Yousefi-Azari, A.R. Ashrafi, Wiener polarity index of fullerenes and hexagonal systems. Appl. Math. Lett. 25, 1510–1513 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Deng, H. Xiao, The maximum Wiener polarity index of trees with \(k\) pendants. Appl. Math. Lett. 23, 710–715 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Deng, On the extremal Wiener polarity index of chemical trees. MATCH Commun. Math. Comput. Chem. 66, 305–314 (2011)Google Scholar
  6. 6.
    T. Došlić, On discriminativity of Zagreb indices. Iran. J. Math. Chem. 3, 25–34 (2012)Google Scholar
  7. 7.
    I. Gutman, Hexagonal systems. A chemistry-motivated excursion to combinatorial chemistry. Teach. Math. 10, 1–10 (2007)CrossRefGoogle Scholar
  8. 8.
    I. Gutman, Selected Theorems in Chemical Graph Theory (University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2017)Google Scholar
  9. 9.
    I. Gutman, S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 1989)CrossRefGoogle Scholar
  10. 10.
    I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett 17, 535–538 (1972)CrossRefGoogle Scholar
  11. 11.
    H. Hosoya, Y. Gao, Mathematical and chemical analysis of Wiener’s polarity number, in Topology in Chemistry—Discrete Mathematics of Molecules, ed. by D.H. Rouvray, R.B. King (Horwood, Chichester, 2002), pp. 38–57Google Scholar
  12. 12.
    H. Hua, K.C. Das, On the Wiener polarity index of graphs. Appl. Math. Comput. 280, 162–167 (2016)Google Scholar
  13. 13.
    H. Hua, M. Faghani, A.R. Ashrafi, The Wiener and Wiener polarity indices of a class of fullerenes with exactly 12n carbon atoms. MATCH Commun. Math. Comput. Chem. 71, 361–372 (2014)Google Scholar
  14. 14.
    H. Hou, B. Liu, Y. Huang, The maximum Wiener polarity index of unicyclic graphs. Appl. Math. Comput. 218, 10149–10157 (2012)Google Scholar
  15. 15.
    A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index. Graphs Combin. 29, 1403–1416 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Ilić, M. Ilić, On some algorithms for computing topological indices of chemical graphs. MATCH Commun. Math. Comput. Chem. 78, 665–674 (2017)Google Scholar
  17. 17.
    H. Lei, T. Li, Y. Ma, H. Wang, Analyzing lattice networks through substructures. Appl. Math. Comput. 329, 297–314 (2018)Google Scholar
  18. 18.
    H. Lei, T. Li, Y. Shi, H. Wang, Wiener polarity index and its generalization in trees. MATCH Commun. Math. Comput. Chem. 78, 199–212 (2017)Google Scholar
  19. 19.
    M. Liu, B. Liu, On the Wiener polarity index. MATCH Commun. Math. Comput. Chem. 66, 293–304 (2011)Google Scholar
  20. 20.
    G. Liu, G. Liu, Wiener polarity index of dendrimers. Appl. Math. Comput. 322, 151–153 (2018)Google Scholar
  21. 21.
    I. Lukovits, W. Linert, Polarity-numbers of cycle-containing structures. J. Chem. Inf. Comput. Sci. 38, 715–719 (1998)CrossRefGoogle Scholar
  22. 22.
    N. Tratnik, The Wiener polarity index of benzenoid systems and nanotubes. Croat. Chem. Acta 91(3), 1–7 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, Y. Hu, The Nordhaus–Gaddum-type inequality for the Wiener polarity index. Appl. Math. Comput. 273, 880–884 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia

Personalised recommendations