Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 1, pp 280–314 | Cite as

Mathematical chemistry illustrations: a personal view of less known results

  • Milan RandićEmail author
Original Paper
  • 107 Downloads

Abstract

We have selected to review half a dozen outstanding results of application of mathematics to chemistry, which despite their importance are not well and widely known to chemists. Most of them involve novel mathematical concept or part of mathematics not widely known in chemistry, such as concept of circuits with alternating C=C and C–C bonds within individual Kekulé valence structures, known as conjugated circuits; paths and partial ordering leading to periodic tables of isomers; aromatic sextets in polycyclic benzenoid compounds; local aromaticity derived from ring bond orders based on Pauling CC bond orders; construction of orthogonal molecular descriptors producing stable regression equations; graphical and numerical representation of DNA and proteins; numerical characterization and comparative study of proteomics maps; and finally we will overview the exact solution to the protein alignment problem.

Keywords

Conjugated circuits Ring bond orders Graphical bioinformatics Graphical representation of proteins Numerical representation of proteomics maps Exact solution of protein alignments 

Notes

Acknowledgements

I would like to thank the two anonymous referees for their useful comments which resulted in a better manuscript.

References

  1. 1.
    D.J. Klein, Mathematical chemistry! Is it? And if so, what it is? HYLE Int. J. Philos. Chem. 19, 35–85 (2013)Google Scholar
  2. 2.
    E. Hückel, Grundzuge der Theorie ungesattiger und aromatischer Verbindungen (Verlag Chemie, Berlin, 1938)Google Scholar
  3. 3.
    K. Haffner, G.F. Thiele, C. Mink, Synthesis and structure of 2,7-Di-tert-butylcyclo- penta[a, e]cyclooctnene. Angew. Chem. Int. Ed. 27, 1191–1192 (1988)CrossRefGoogle Scholar
  4. 4.
    M. Randić, Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68–70 (1976)CrossRefGoogle Scholar
  5. 5.
    M. Randić, A graph theoretical approach to conjugation and resonance energies of hydrocarbons. Tetrahedron 33, 1905–1920 (1977)CrossRefGoogle Scholar
  6. 6.
    M. Randić, Aromaticity and conjugation. J. Am. Chem. Soc. 99, 444–450 (1977)CrossRefGoogle Scholar
  7. 7.
    M. Randić, M. Novič, D. Plavšić, Solved and Unsolved Problems in Structural Chemistry (CRC Press, Boca Raton, 2016), p. 379CrossRefGoogle Scholar
  8. 8.
    I. Gutman, S.J. Cyvin, Conjugated circuits in benzenoid hydrocarbons. J. Mol. Struct. (Theochem) 184, 159–163 (1980)CrossRefGoogle Scholar
  9. 9.
    M. Randić, On the history of the Randić index and emerging hostility towards chemical graph theory. MATCH Commun. Math. Comput. Chem. 59, 5–124 (2008)Google Scholar
  10. 10.
    M. Randić, M. Novič, D. Plavšić, Solved and Unsolved Problems in Structural Chemistry (CRC Press, Boca Raton, 2016)CrossRefGoogle Scholar
  11. 11.
    E. Clar, The Aromatic Sextet Theory (Wiley, London, 1972)Google Scholar
  12. 12.
    O. Polansky, G. Derflinger, Zur Clar’schen Theorie Lokaler Benzoider Gebiete in Konderzirter Aromated. Int. J. Quantum Chem. 1, 379–401 (1967)CrossRefGoogle Scholar
  13. 13.
    M. Randić, D. Plavšić, Algebraic Clar formulas—numerical representation of Clar structural formulas. Acta Chim. Slov. 58, 448–457 (2011)Google Scholar
  14. 14.
    M. Randić, Novel insight into Clar’s aromatic π-sextets. Chem. Phys. Lett. 601, 1–5 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Randić, Aromaticity revisited. Adv. Quantum Chem. 77 (2018)Google Scholar
  16. 16.
    M. Randić, A.T. Balaban, Local aromaticity and aromatic sextet theory beyond Clar. Int. J. Quant. Chem. (2018)Google Scholar
  17. 17.
    L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947)CrossRefGoogle Scholar
  18. 18.
    P. Bultinck, R. Ponec, A. Gallegos, S. Fias, S. van Damme, R. Carbó-Dorca, Generalized Polansky Index as an aromaticity measure in polycyclic aromatic hydrocarbons. Croat. Chem. Acta 79, 363–371 (2006)Google Scholar
  19. 19.
    P. von Rague Schleyer, M. Manoharan, H. Jiao, F. Stahl, The acenes: is there a relationship between aromatic stabilization and reactivity? Org. Lett. 3, 3643–3646 (2001)CrossRefGoogle Scholar
  20. 20.
    I. Gutman, M. Randić, A correlation between Kekulé valence structures and conjugated circuits. Chem. Phys. 41, 265–270 (1979)CrossRefGoogle Scholar
  21. 21.
    Ref. [10], pp. 311–324Google Scholar
  22. 22.
    R. Feynman, The Feynman Lectures on Physics, 2nd edn. (Addison-Wesley, Boston, 2005)Google Scholar
  23. 23.
    R.P. Feynman, Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)CrossRefGoogle Scholar
  24. 24.
    W.S. Burnside, A.W. Patton, Theory of Equations, vol. 1 (Dover Publications, New York, 1956)Google Scholar
  25. 25.
    R. Barakat, Characteristic polynomials of chemical graphs via symmetric function theory. Theor. Chim. Acta 69, 35–39 (1986)CrossRefGoogle Scholar
  26. 26.
    M. Randić, On evaluation of the characteristic polynomials via symmetric function theory. J. Math. Chem. 1, 145–152 (1987)CrossRefGoogle Scholar
  27. 27.
    M. Randić, On the history of the connectivity index: from the connectivity index to the exact solution of the protein alignment problem. SAR QSAR Environ. Res. 26, 523–555 (2015)CrossRefGoogle Scholar
  28. 28.
    Ref. [10], pp. 122–126Google Scholar
  29. 29.
    C.A. Coulson, Proc. Robert A. Welch Foundation Conf. XVI, Houston, p. 117 (1973)Google Scholar
  30. 30.
    J.R. Platt, Influence of neighbor bonds on additive bond properties in paraffins. J. Chem. Phys. 15, 419–420 (1947)CrossRefGoogle Scholar
  31. 31.
    D. Ceressey, ‘Sleeping beauty’ papers slumber for decades, Nature, 25 May, 2015Google Scholar
  32. 32.
    M. Randić, Characterization of atoms, molecules, and classes of molecules based on path enumerations. MATCH Commun. Math. Comput. Chem. 5, 3–60 (1979)Google Scholar
  33. 33.
    R.F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Edingburgh Math. Soc. 21, 144 (1903)CrossRefGoogle Scholar
  34. 34.
    M. Randić, Chemical shift sums. J. Magn. Res. 39, 431–436 (1980)Google Scholar
  35. 35.
    Ref. [10], pp. 188–191 and pp. 199–209Google Scholar
  36. 36.
    O. Ivanciuc, J.-P. Rabine, D. Cabrol-Bass, 13C NMR chemical shift sum prediction for alkanes using neural networks. Comput. Chem. 21, 437–443 (1997)CrossRefGoogle Scholar
  37. 37.
    D.M. Grant, E.G. Paul, Carbon-13 magnetic resonance. II. Chemical shift data for the alkanes. J. Am. Chem. Soc. 86, 2984–2990 (1964)CrossRefGoogle Scholar
  38. 38.
    L.P. Lindeman, J.Q. Adams, Carbon-13 nuclear magnetic resonance spectrometry. Chemical shifts for the paraffines through C9. Anal. Chem. 43, 1245–1252 (1971)CrossRefGoogle Scholar
  39. 39.
    M. Randić, M. Novič, D. Vikić-Topić, D. Plavšić, On intramolecular average 13C chemical shifts in nonanes. Int. J. Quantum Chem. 109, 3094–3102 (2009)Google Scholar
  40. 40.
    M. Randić, N. Trinajstić, Composition as a method for data reduction: application to carbon-13 NMR chemical shifts. Theor. Chim. Acta 73, 233–246 (1988)CrossRefGoogle Scholar
  41. 41.
    Y. Miyashita, H. Ohsako, T. Okuyama, S.-I. Sasaki, M. Randić, Computer-assisted studies of structure-property relationship using graph invariants. Magn. Reson. Chem. 29, 362–365 (1991)CrossRefGoogle Scholar
  42. 42.
    G. Rücker, C. Rücker, Counts of all walks as atomic and molecular descriptors. J. Chem. Inf. Comp. Sci. 33, 683–695 (1993)CrossRefGoogle Scholar
  43. 43.
    D. Svozil, J. Pospíchal, V. Kvasnička, Neural-network prediction of carbon-13 NMR chemical shifts in alkanes. J. Chem. Inf. Comp. Sci. 35, 924–928 (1995)CrossRefGoogle Scholar
  44. 44.
    Ref. [10], pp. 207–209Google Scholar
  45. 45.
    D.J. Klein, Similarity and Dissimilarity in Posets. J. Math. Chem. 18, 321–348 (1995)CrossRefGoogle Scholar
  46. 46.
    D.J. Klein, Partial Ordering, Review, MATCH Commun. Math. Comput. ChemGoogle Scholar
  47. 47.
    D.J. Klein, J. Brickmann (Eds) Partial ordering in chemistry, MATCH Commun. Math. Comput. Chem. 42(2000)1–290Google Scholar
  48. 48.
    P.R. Duchowicz, E.A. Castro, The Order Theory in QSPR—QSAR Studies, Mathematical Chemistry Monograph #7 (Kragujevac, Serbia, 2006)Google Scholar
  49. 49.
    R. Brüggemann, L. Carlsen (Eds), Partial Order in Environmental Sciences and Chemistry. Heidelberg (2006)Google Scholar
  50. 50.
    H. Hosoya, Topological Index. A newly proposed quantity characterizing topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn 44, 2332–2339 (1971)CrossRefGoogle Scholar
  51. 51.
    M. Randić, Characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)CrossRefGoogle Scholar
  52. 52.
    L.B. Kier, W.J. Murray, M. Randić, L.H. Hall, Molecular Connectivity. 5. Connectivity series concept applied to density. J. Pharm. Sci. 65, 1226–1230 (1976)CrossRefGoogle Scholar
  53. 53.
    M. Randić, Resolution of ambiguities in structure-property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 31, 311–370 (1991)CrossRefGoogle Scholar
  54. 54.
    D.J. Klein, M. Randić, D. Babić, B. Lučić, S. Nikolić, N. Trinajstić, Hierarchical orthogonalization of descriptors. Int. J. Quantum Chem. 63, 215–222 (1997)CrossRefGoogle Scholar
  55. 55.
    M. Randić, Fitting of non-linear regressions by orthogonalized power series. J. Comput. Chem. 14, 363–370 (1993)CrossRefGoogle Scholar
  56. 56.
    M. Randić, Correlation of enthalpy of octanes with orthogonal connectivity indices. Theochem. J. Mol. Struct. 233, 45–59 (1991)CrossRefGoogle Scholar
  57. 57.
    M. Randić, Orthogonal molecular descriptors. New J. Chem. 15, 517–525 (1991)Google Scholar
  58. 58.
    B. Lučić, S. Nikolić, N. Trinjastić, D. Juretić, The structure-property models can be improved using the orthogonal descriptors. J. Chem. Inf. Comput. Sci. 35, 532–538 (1995)CrossRefGoogle Scholar
  59. 59.
    M. Šoškić, D. Plavšić, N. Trinajstić, Link between orthogonal and standard multiple linear regression models. J. Chem. Inf. Comput. Sci. 36, 829–832 (1996)CrossRefGoogle Scholar
  60. 60.
    O. Araujo, D.A. Morales, An alternative approach to orthogonal graph theoretical invariants. Chem. Phys. Lett. 257, 393–396 (1996)CrossRefGoogle Scholar
  61. 61.
    O. Araujo, D.A. Morales, Properties of new orthogonal graph theoretical invariants. J. Chem. Inf. Comput. Sci. 38, 1031–1037 (1998)CrossRefGoogle Scholar
  62. 62.
    A.R. Katritzky, V. Lobanov, M. Karelson (eds.), CODESSA (Comprehensive Descriptors for Structures and Statistical Analysis (University of Florida, Gainesville, 1995)Google Scholar
  63. 63.
    M. Randić, On characterization of chemical structure. J. Chem. Inf. Comput. Sci. 37, 672–687 (1997)CrossRefGoogle Scholar
  64. 64.
    Ref. [10], pp. 142–145Google Scholar
  65. 65.
    M. Randić, Novel graph theoretical approach to heteroatom in quantitative structure- activity relationship. Intel. Lab. Syst. 10, 213–227 (1991)CrossRefGoogle Scholar
  66. 66.
    L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976)Google Scholar
  67. 67.
    Ref. [10], pp. 177–188Google Scholar
  68. 68.
    M. Pompe, M. Randić, The variable connectivity index revisited—insight into structural interpretation. Chem. Phys. Lett. (submitted)Google Scholar
  69. 69.
    S. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)CrossRefGoogle Scholar
  70. 70.
    T.F. Smith, M.S. Wasserman, Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  71. 71.
    D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity searches. Science 227, 1435–1441 (1985)CrossRefGoogle Scholar
  72. 72.
    W.R. Pearson, D.J. Lipman, Improved tools for biological sequence comparison. Proc. Nat. Acad. Sci. USA 85, 2444–2448 (1988)CrossRefGoogle Scholar
  73. 73.
    S.F. Altschul, W. Gish, W. Miller, E. Myers, D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefGoogle Scholar
  74. 74.
    S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  75. 75.
    M. Randić, 2-D graphical representation of proteins based on virtual genetic code. SAR QSAR Environ. Res. 15, 147–157 (2004)CrossRefGoogle Scholar
  76. 76.
    M. Randić, J. Zupan, A.T. Balaban, D. Vikić-Topić, D. Plavšić, Graphical representation of proteins. Chem. Rev. 111, 790–862 (2011)CrossRefGoogle Scholar
  77. 77.
    M. Randić, On a geometry-based approach to protein sequence alignment. J. Math. Chem. 43, 756–772 (2008)CrossRefGoogle Scholar
  78. 78.
    M. Randić, Very efficient search for protein alignment—VESPA. J. Comput. Chem. 33, 702–707 (2012)CrossRefGoogle Scholar
  79. 79.
    M. Randić, T. Pisanski, Proteins alignment: exact versus approximate. An illustration. J. Comput. Chem. 36, 1069–1074 (2015)CrossRefGoogle Scholar
  80. 80.
    Ref. [10], pp. 344–361Google Scholar
  81. 81.
    M. Randić, M. Novič, M. Vračko, On novel representation of proteins based on amino acid adjacency matrix. SAR QSAR Environ. Res. 19, 339–349 (2008)CrossRefGoogle Scholar
  82. 82.
    M. Randić, Clar formulas for larger benzenoid hydrocarbons revisited. Int. J. Chem. Model. (in press)Google Scholar
  83. 83.
    M. Randić, Analytical expressions for benzenoid rings resonance energy. J. Comput. Chem. (submitted)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of ChemistryLjubljanaSlovenia
  2. 2.Department of Mathematics and Computer ScienceDrake UniversityDes MoinesUSA
  3. 3.AmesUSA

Personalised recommendations