Journal of Mathematical Chemistry

, Volume 57, Issue 1, pp 263–279 | Cite as

Intrinsic protein geometry with application to non-proline cis peptide planes

  • Yanzhen Hou
  • Jin Dai
  • Jianfeng He
  • Antti J. Niemi
  • Xubiao Peng
  • Nevena IlievaEmail author
Original Paper


The shape of a protein can be modeled by the \(\hbox {C}^{\alpha }\) atoms of its backbone, the mathematical description employing the notion of extrinsic geometry of a discrete piecewise linear chain. We advance differential geometry of a natively framed discrete chain to argue the existence of two additional, independent and intrinsic geometric structures, provided by the peptide planes and side chains, respectively. We develop our general methodology within a case study: analysis of the intrinsic geometry of atoms that are located around a non-proline cis peptide plane. We show that the native peptide plane framing allows for revealing of atomic positions anomalies. That way, we identify a number of entries that display such anomalies around their non-proline cis peptide planes within the ultrahigh-resolution structures in PDB. We propose that our approach can be extended into a visual analysis and refinement tool that is applicable even when resolution is limited or data is incomplete, for example when there are atoms missing in an experimental construct.


Protein structure Backbone geometry Coordinate frames Peptide planes 

Mathematics Subject Classification

62B99 92B05 92B15 



This work was supported in part by Bulgarian Science Fund (Grant DNTS-CN-01/9/2014), Vetenskapsrådet (Sweden), Carl Trygger’s Stiftelse and Qian Ren Grant at Beijing Institute of Technology.


  1. 1.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 5 (Perish Inc, Houston, 1979)Google Scholar
  2. 2.
    R.L. Bishop, There is more than one way to frame a curve. Am. Math. Mon. 82, 246 (1974)CrossRefGoogle Scholar
  3. 3.
    A.J. Hanson, Visualizing Quaternions (Elsevier, London, 2006)Google Scholar
  4. 4.
    J.B. Kuipers, Quaternions and Rotation Sequences (Princeton University Press, Princeton, 1999)Google Scholar
  5. 5.
    G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95 (1963)CrossRefGoogle Scholar
  6. 6.
    K. Hinsen, S. Hu, G. Kneller, A.J. Niemi, A comparison of reduced coordinate sets for describing protein structure. J. Chem. Phys. 139, 124115 (2013)CrossRefGoogle Scholar
  7. 7.
    P.G. Mezey, K. Fukui, S. Arimoto, K. Taylor, Polyhedral shapes of functional group distributions in biomolecules and related similarity measures. Int. J. Quant. Chem. 66, 99 (1998)CrossRefGoogle Scholar
  8. 8.
    P.G. Mezey, K. Fukui, S. Arimoto, Treatment of small deformations of polyhedral shapes of functional group distributions in biomolecules. Int. J. Quant. Chem. 76, 756 (2000)CrossRefGoogle Scholar
  9. 9.
    C.M. Maggiora, P.G. Mezey, B. Mao, K.C. Chou, A new chiral feature in \(\alpha \)-helical domains of proteins. Biopolymers 30, 211 (1990)CrossRefGoogle Scholar
  10. 10. of molecular graphics systems. Accessed 25 July 2018
  11. 11.
    T.X. Hoang, A. Trovato, F. Seno, J.R. Banavar, A. Maritan, Geometrical model for the native-state folds of proteins. Biophys. Chem. 115, 289 (2005)CrossRefGoogle Scholar
  12. 12.
    G.A. Arteca, P.G. Mezey, A method for the characterization of foldings in protein ribbon models. J. Mol. Graph. 8, 60 (1990)CrossRefGoogle Scholar
  13. 13.
    A.N. Jha, S. Vishveshwara, Inter-helical interactions in membrane proteins: analysis based on the local backbone geometry and the side chain interactions. J. Biomol. Struct. Dyn. 26, 719 (2009)CrossRefGoogle Scholar
  14. 14.
    G.A. Arteca, O. Tapia, P.G. Mezey, Implementing knot-theoretical characterization methods to analyze the backbone structure of proteins: application to CTF L7/L12 and carboxypeptidase A inhibitor proteins. J. Mol. Graph. 9, 148 (1991)CrossRefGoogle Scholar
  15. 15.
    D. Marenduzzo, C. Micheletti, H. Seyed-allaei, A. Trovato, A. Maritan, Continuum model for polymers with nite thickness. J. Phys. A Math. Gen. 38, L277 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Hu, M. Lundgren, A.J. Niemi, The discrete frenet frame and curve visualization with applications to folded proteins. Phys. Rev. E 83, 061908 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Sasai, P.G. Wolynes, Phys. Rev. Lett. 65, 2740 (1990)CrossRefGoogle Scholar
  18. 18.
    A. Davtyan, N.P. Schafer, W. Zheng, C. Clementi, P.G. Wolynes, G.A. Papoian, J. Phys. Chem. B 116, 8494 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Janin, S. Wodak, M. Levitt, B. Maigret, J. Mol. Biol. 125, 357 (1978)CrossRefGoogle Scholar
  20. 20.
    S.C. Lovell, J. Word, J.S. Richardson, D.C. Richardson, The penultimate rotamer library. Proteins Struct. Funct. Bioinform. 40, 389 (2000)CrossRefGoogle Scholar
  21. 21.
    H. Schrauber, F. Eisenhaber, P. Argos, Rotamers: to be or not to be?: an analysis of amino acid side-chain conformations in globular. J. Mol. Biol. 230, 592 (1993)CrossRefGoogle Scholar
  22. 22.
    R.L. Dunbrack Jr., M. Karplus, Backbone-dependent Rotamer library for proteins application to side-chain prediction. J. Mol. Biol. 230, 543 (1993)CrossRefGoogle Scholar
  23. 23.
    M.V. Shapovalov, R.L. Dunbrack Jr., A smoothed backbone-dependent Rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Peng, A. Chenani, S. Hu, Y. Zhou, A.J. Niemi, A three dimensional visualisation approach to protein heavy-atom structure reconstruction. BMC Struct. Biol. 14, 27 (2014)CrossRefGoogle Scholar
  25. 25.
    H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235 (2000)CrossRefGoogle Scholar
  26. 26.
    D.S. Berkholz, C.M. Driggers, M.V. Shapovalov, R.L. Dunbrack, P.A. Karplus, Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites. PNAS 109, 449 (2012)CrossRefGoogle Scholar
  27. 27.
    D.E. Stewart, A. Sarkar, J.E. Wampler, Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253 (1990)CrossRefGoogle Scholar
  28. 28.
    A. Jabs, M.S. Weiss, R. Hilgenfeld, Non-proline cis peptide bonds in proteins. J. Mol. Biol. 286, 291 (1999)CrossRefGoogle Scholar
  29. 29.
    C. Dugave, L. Demange, Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 103, 2475 (2003)CrossRefGoogle Scholar
  30. 30.
    W.G. Touw, R.P. Joosten, G. Vriend, Detection of trans-cis flips and peptide-plane flips in protein structures. Acta Crystallogr. D71, 1604 (2015)Google Scholar
  31. 31.
    B.L. Stoddard, S. Pietrokovski, Breaking up is hard to do. Nat. Struct. Mol. Biol. 5, 3 (1998)CrossRefGoogle Scholar
  32. 32.
    V. Tugarinov, J. Anglister, Solution Structure of an antibody-bound HIV-1IIIB V3 peptide: a cis proline turn linking two -hairpin strands. J. Biomol. Struct. Dyn. 17, 57 (2000)CrossRefGoogle Scholar
  33. 33.
    M. Lundgren, A.J. Niemi, F. Sha, Protein loops, solitons, and side-chain visualization with applications to the left-handed helix region. Phys. Rev. E 85, 061909 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Lundgren, A.J. Niemi, Correlation between protein secondary structure, backbone bond angles, and side-chain orientations. Phys. Rev. E 86, 021904 (2012)CrossRefGoogle Scholar
  35. 35. Accessed 25 July 2018
  36. 36.
    J. Dai, A.J. Niemi, J. He, A. Sieradzan, N. Ilieva, Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example. Phys. Rev. E 93, 032409 (2016)CrossRefGoogle Scholar
  37. 37.
    P.G. Mezey, Z. Antal, An alternative to the“Star Path” enhancement of the ADMA linear scaling method for protein modeling. J. Comput. Chem. 38, 1774 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.NORDITAStockholmSweden
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations