Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 1, pp 202–225 | Cite as

Forcing and anti-forcing polynomials of perfect matchings for some rectangle grids

  • Shuang Zhao
  • Heping ZhangEmail author
Original Paper
  • 51 Downloads

Abstract

The forcing number of a perfect matching M of a graph G is the minimal number of edges of M that are contained in no other perfect matchings of G. The anti-forcing number of M in G is the minimal number of edges of G not in M whose deletion results in a subgraph with a unique perfect matching M. Recently the forcing and anti-forcing polynomials of perfect matchings of a graph were proposed as counting polynomials for perfect matchings with the same forcing number and anti-forcing number respectively. In this paper, we focus on \(2\times n\) and \(3\times {2n}\) grids, and obtain the explicit expressions of their forcing and anti-forcing polynomials. As corollaries, their forcing and anti-forcing spectra are obtained.

Keywords

Grid graph Dimer covering Perfect matching Forcing polynomial Anti-forcing polynomial 

References

  1. 1.
    P. Adams, M. Mahdian, E.S. Mahmoodian, On the forced matching numbers of bipartite graphs. Discrete Math. 281, 1–12 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Afshani, H. Hatami, E.S. Mahmoodian, On the spectrum of the forced matching number of graphs. Australas. J. Comb. 30, 147–160 (2004)Google Scholar
  3. 3.
    K. Deng, H. Zhang, Anti-forcing spectra of perfect matchings of graphs. J. Comb. Optim. 33, 660–680 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Deng, H. Zhang, Extremal anti-forcing numbers of perfect matchings of graphs. Discrete Appl. Math. 224, 69–79 (2017)CrossRefGoogle Scholar
  5. 5.
    M.E. Fisher, Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)CrossRefGoogle Scholar
  6. 6.
    F. Harary, D.J. Klein, T.P. Živković, Graphical properties of polyhexes: perfect matching vector and forcing. J. Math. Chem. 6, 295–306 (1991)CrossRefGoogle Scholar
  7. 7.
    H.-K. Hwang, H. Lei, Y.-N. Yeh, H. Zhang, Distribution of forcing and anti-forcing numbers of random perfect matchings on hexagonal chains and crowns (preprint, 2015). http://140.109.74.92/hk/?p=873
  8. 8.
    X. Jiang, H. Zhang, The maximum forcing number of cylindrical grid, toroidal 4–8 lattice and Klein bottle 4–8 lattice. J. Math. Chem. 54, 18–32 (2016)CrossRefGoogle Scholar
  9. 9.
    P.W. Kasteleyn, The statistics of dimers on a lattice I: the number of dimer arrangements on a quadratic lattice. Phys. 27, 1209–1225 (1961)Google Scholar
  10. 10.
    R. Kenyon, A. Okounkov, S. Sheffield, Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)CrossRefGoogle Scholar
  11. 11.
    D.J. Klein, M. Randić, Innate degree of freedom of a graph. J. Comput. Chem. 8, 516–521 (1987)CrossRefGoogle Scholar
  12. 12.
    S. Kleinerman, Bounds on the forcing numbers of bipartite graphs. Discrete Math. 306, 66–73 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Lei, Y. Yeh, H. Zhang, Anti-forcing numbers of perfect matchings of graphs. Discrete Appl. Math. 202, 95–105 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Lin, F. Zhang, A linear algorithm for a perfect matching in polyomino graphs. Theor. Comput. Sci. 675, 82–88 (2017)CrossRefGoogle Scholar
  15. 15.
    W.T. Lu, F.Y. Wu, Dimer statistics on the Möbius strip and the Klein bottle. Phys. Lett. A 259, 108–114 (1999)CrossRefGoogle Scholar
  16. 16.
    W.T. Lu, F.Y. Wu, Close-packed dimers on nonorientable surfaces. Phys. Lett. A 293, 235–246 (2002)CrossRefGoogle Scholar
  17. 17.
    F. Lu, L. Zhang, F. Lin, Dimer statistics on the Klein bottle. Physica A 390, 2315–2324 (2011)CrossRefGoogle Scholar
  18. 18.
    C.L. Lucchesi, D.H. Younger, A minimax theorem for directed graphs. J. Lond. Math. Soc. 17, 369–374 (1978)CrossRefGoogle Scholar
  19. 19.
    L. Pachter, P. Kim, Forcing matchings on square grids. Discrete Math. 190, 287–294 (1998)CrossRefGoogle Scholar
  20. 20.
    M. Randić, D.J. Klein, in Mathematical and Computational Concepts in Chemistry, ed. by N. Trinajstić (Wiley, New York, 1985), pp. 274–282Google Scholar
  21. 21.
    M.E. Riddle, The minimum forcing number for the torus and hypercube. Discrete Math. 245, 283–292 (2002)CrossRefGoogle Scholar
  22. 22.
    L. Shi, H. Wang, H. Zhang, On the maximum forcing and anti-forcing numbers of (4,6)-fullerenes. Discrete Appl. Math. 233, 187–194 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Shi, H. Zhang, Tight upper bound on the maximum anti-forcing numbers of graphs. Discrete Math. Theor. Comput. Sci. 19(3) (2017). arXiv:1704.04124 [math.CO]
  24. 24.
    H.N.V. Temperley, M.E. Fisher, Dimer problem in statistical mechanics: an exact result. Philos. Mag. 6, 1061–1063 (1961)CrossRefGoogle Scholar
  25. 25.
    D. Vukičević, N. Trinajstić, On the anti-forcing number of benzenoids. J. Math. Chem. 42, 575–583 (2007)CrossRefGoogle Scholar
  26. 26.
    D. Vukičević, N. Trinajstić, On the anti-Kekulé number and anti-forcing number of cata-condensed benzenoids. J. Math. Chem. 43, 719–726 (2008)CrossRefGoogle Scholar
  27. 27.
    L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal systems. MATCH Commun. Math. Comput. Chem. 70, 493–500 (2013)Google Scholar
  28. 28.
    W. Yan, Y. Yeh, F. Zhang, Dimer problem on the cylinder and torus. Physica A 387, 6069–6078 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, J. Cai, On the anti-forcing number of \(C_m\times P_k\). Adv. Appl. Math. 5, 435–442 (2016). (in Chinese) CrossRefGoogle Scholar
  30. 30.
    L. Zhang, S. Wei, F. Lu, The number of Kekulé structures of polyominos on the torus. J. Math. Chem. 51, 354–368 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Zhang, F. Zhang, Perfect matchings of polyomino graphs. Graphs Comb. 13, 295–304 (1997)CrossRefGoogle Scholar
  32. 32.
    H. Zhang, S. Zhao, R. Lin, The forcing polynomial of catacondensed hexagonal systems. MATCH Commun. Math. Comput. Chem. 73, 473–490 (2015)Google Scholar
  33. 33.
    H. Zhang, X. Zhou, A maximum resonant set of polyomino graphs. Discuss. Math. Graph Theory 36, 323–337 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Zhao, H. Zhang, Anti-forcing polynomials for benzenoid systems with forcing edges. Discrete Appl. Math. (2018).  https://doi.org/10.1016/j.dam.2018.05.023
  35. 35.
    S. Zhao, H. Zhang, Forcing polynomials of benzenoid parallelogram and its related benzenoids. Appl. Math. Comput. 284, 209–218 (2016)Google Scholar
  36. 36.
    X. Zhou, H. Zhang, A minimax result for perfect matchings of a polyomino graph. Discrete Appl. Math. 206, 165–171 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Zhou, H. Zhang, Clar sets and maximum forcing numbers of hexagonal systems. MATCH Commun. Math. Comput. Chem. 74, 161–174 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations