Journal of Mathematical Chemistry

, Volume 57, Issue 1, pp 190–201 | Cite as

Three-layered nanostructured metamaterials for surface plasmon polariton guiding

  • Aleksej Trofimov
  • Tatjana GricEmail author
  • Ortwin Hess
Original Paper


A novel metamaterial (MM) to guide surface plasmon polariton (SPP) is considered. Specific example of three-layered nanostructured MM and its dispersion engineering are studied in details allowing the development of new devices. Herein we deal with the general original concept of MMs based on inclusions of the additional layers as with a promising class of materials. The metal material stands for as the limiting factor of the frequency range that SPP mode exists. It is worthwhile noting that the SPP mode at high frequency is characterized by extremely large loss. The former restriction causes serious limitations for the potential applications of SPP in the field of optical interconnection, active SPP devices and so on. The surface mode guided by dielectric/graphene/dielectric multilayers MM has been studied based on the theory of electromagnetic field aiming to extend the frequency range of SPP mode. It is demonstrated that surface mode could be supported by the MM. Moreover, the frequency range to where conventional metal SPP cannot exist is extended. Herein, it is concluded that, the MM guided SPP mode can potentially be used to enhance the plasmonic performance over traditional metal one by varying the structure parameters.


Optics at surfaces Metamaterials Nanostructures 


  1. 1.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefGoogle Scholar
  2. 2.
    P. Ginzburg, D. Arbel, M. Orenstein, Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching. Opt. Express 15, 6762–6767 (2007)CrossRefGoogle Scholar
  4. 4.
    E. Feigenbaum, M. Orenstein, Optical 3D cavity modes below the diffraction-limit using slow-wave surfaceplasmon-polaritons. Opt. Express 15, 2607–2612 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, Berlin, 1988)CrossRefGoogle Scholar
  6. 6.
    J.J. Burke, G.I. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986)CrossRefGoogle Scholar
  7. 7.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  8. 8.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-Infrared applications. ACS Nano 8, 1086–1101 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Li, Y. Zhou, B. Quan, X. Pan, X. Xu, Z. Ren, F. Hu, H. Fan, M. Qi, J. Bai, Graphene–metamaterial hybridization for enhanced terahertz response. Carbon 78, 102–112 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.X. Zhou, X.L. Xu, H.M. Fan, Z.Y. Ren, J.T. Bai, L. Wang, Phys. Chem. Chem. Phys. 15, 5084–5090 (2013)CrossRefGoogle Scholar
  12. 12.
    N. Papasimakis, S. Thongrattanasiri, N.I. Zheludev, F.J. García de Abajo, The magnetic response of graphene split-ring metamaterials. Light: Sci. Appl. 2, 78 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Fan, Z. Wei, Z. Zhang, H. Li, Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt. Lett. 38, 5410–5413 (2013)CrossRefGoogle Scholar
  14. 14.
    L.A. Falkovsky, Optical properties of graphene. J. Phys: Conf. Ser. 129, 012004 (2008)Google Scholar
  15. 15.
    G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)CrossRefGoogle Scholar
  17. 17.
    M.G. Cattom, D.R. Tilley, Introduction to surface and superlattice excitations (IOP Publishing, Bristol, 2005). (Ch. 8–9) Google Scholar
  18. 18.
    R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang, Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Appl. Phys. Lett. 92, 141115 (2008)CrossRefGoogle Scholar
  19. 19.
    J.A. Sorni, M. Naserpour, C.J. Zapata-Rodriguez, J.J. Miret, Dyakonov surface waves in lossy metamaterials. Opt. Commun. 355, 251 (2015)CrossRefGoogle Scholar
  20. 20.
    O. Takayama, D. Artigas, L. Torner, Practical dyakonons. Opt. Lett. 37, 4311 (2012)CrossRefGoogle Scholar
  21. 21.
    A.A. Orlov, P.M. Voroshilov, P.A. Belov, Y.S. Kivshar, Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B 84, 045424 (2011)CrossRefGoogle Scholar
  22. 22.
    Y.-L. Zhang, Q. Zhang, X.-Z. Wang, Extraordinary surface polaritons in obliquely truncated dielectric/metal metamaterials. J. Opt. Soc. Am. B 33, 543 (2016)CrossRefGoogle Scholar
  23. 23.
    I. Iorsh, A. Orlov, P. Belov, Y. Kivshar, Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett. 99(15), 151914 (2011)CrossRefGoogle Scholar
  24. 24.
    S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). CrossRefGoogle Scholar
  25. 25.
    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005). CrossRefGoogle Scholar
  26. 26.
    J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20(7), 8100–8116 (2012)CrossRefGoogle Scholar
  27. 27.
    N. Engheta, Pursuing near-zero response. Science 340, 286–287 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Gric, O. Hess, Tunable surface waves at the interface separating different graphene–dielectric composite hyperbolic metamaterials. Opt. Express 25, 11466–11476 (2017)CrossRefGoogle Scholar
  29. 29.
    J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72(7), 075405 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electronic SystemsVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Semiconductor Physics Institute, Center for Physical Sciences and TechnologyVilniusLithuania
  3. 3.The Blackett Laboratory, Department of PhysicsImperial College LondonLondonUK

Personalised recommendations