Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 10, pp 3089–3114 | Cite as

Mathematical analysis and numerical simulations for the HSP70 synthesis model

  • Gülnihal Meral
  • Neslihan Nesliye Pelen
Original Paper

Abstract

The heat shock proteins (HSPs) protect the other proteins in the process of folding under stressful conditions such as oxygen deprivation, hypothermy or presence of alcohol. They have also an important role in tumour invasion. In this paper, the existence, uniqueness and permanence properties for the solution of the mathematical model which focuses on the synthesis of HSP70 is proved. Moreover the numerical simulations are performed by using FDM, namely a combination of backward and forward Euler methods, and the results confirm the expected behaviour of the solution.

Keywords

Existence and uniqueness Permenance HSP70 synthesis Mathematical modelling FDM 

References

  1. 1.
    D. Skowyra, C. Georgopoulos, M. Zylicz, The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62, 939–944 (1990)CrossRefPubMedGoogle Scholar
  2. 2.
    S. Walter, J. Buchner, Molecular chaperones cellular machines for protein folding. Angew. Chem. Int. Ed. Engl. 41, 1098–1113 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    M. Zylicz, F.W. King, A. Wawrzynow, Hsp70 interactions with the p53 tumour suppressor protein. EMBO J. 20, 4634–4638 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    R.I. Morimoto, D.A. Jurivich, P.E. Kroeger, S.K. Mathur, S.P. Murphy, A. Nakai, K. Abravaya, K. Sarge, L. Sistonen, Regulation of heat shock gene transcription by a family of heat shock factors, in The Biology of Heat Shock Proteins and Molecular Chaperones, ed. by R.I. Morimoto, A. Tissires, C. Georgopoulos (Cold Spring Harbor Lab. Press, New York, pp. 417–455, 1994)Google Scholar
  5. 5.
    Z. Szymanska, M. Zylicz, Mathematical modeling of heat shock protein synthesis in response to temperature change. J. Theor. Biol. 259(3), 562–569 (2009)CrossRefPubMedGoogle Scholar
  6. 6.
    R.I. Morimoto, Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410 (1993)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Peper, C.A. Grimbergen, J.A. Spaan, J.E. Souren, R. van Wijk, A mathematical model of the hsp70 regulation in the cell. Int. J. Hyperth. 14, 97–124 (1998)CrossRefGoogle Scholar
  8. 8.
    T.R. Rieger, R.I. Morimoto, V. Hatzimanikatis, Mathematical modeling of the eukaryotic heat shock response: dynamics of the Hsp70 promoter. Biophys. J. 88, 1646–1658 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    J.D. Scheff, J.D. Stallings, J. Reifman, V. Rakesh, Mathematical modeling of the heat-shock response in HeLa cells. Biophys. J. 109, 182–193 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    I. Petre, A. Mizera, C.L. Hyder, A. Mikhailov, J.E. Eriksson, L. Sistonen, R.J. Back, A new mathematical model for the heat shock response. in Algorithmic Bioprocesses (2009), pp. 411–425. https://doi.org/10.1017/978-3-540-88868-7_21
  11. 11.
    L. Shangerganesh, K. Balachandran, Existence and uniqueness of a preditor–prey type model with mixed boundary conditions. Acta Appl. Math. 116(1), 71–86 (2011)CrossRefGoogle Scholar
  12. 12.
    J.E. Macias-Diaz, Existence and uniqueness of positive and bounded solutions of a discrete population model with fractional dynamics. Discrete Dyn. Nat. Soc. vol. 2017, Article ID 5716015 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Karakoç, Asymptotic behaviour of a population model with piecewise constant argument. Appl. Math. Lett. 70, 7–13 (2017)CrossRefGoogle Scholar
  14. 14.
    N.N. Pelen, A.F. Güvenilir, B. Kaymakçalan, Necessary and sufficient condition for existence of periodic solutions of predator-prey dynamic systems with Beddington-De-Angelis-type functional response. Adv. Differ. Equ. 2016.  https://doi.org/10.1186/s13662-016-0747-0
  15. 15.
    N.N. Pelen, Stability analysis of the periodic solutions of some kinds of predator–prey dynamical systems. J. Math. Article ID 7308609, p. 11. https://doi.org/10.1155/2016/7308609 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Märkl, G. Meral, C. Surulescu, Mathematical analysis and numerical simulations for a system modeling acid-mediated tumor cell invasion. Int. J. Anal. (2013).  https://doi.org/10.1155/2013/878051 CrossRefGoogle Scholar
  17. 17.
    G. Meral, C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion. J. Math. Anal. Appl. 408(2), 597–614 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Stinner, C. Surulescu, G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities IMA. J. Appl. Math. 80(5), 1300–1321 (2014)Google Scholar
  19. 19.
    H.J. Eberl, L. Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. Electron. J. Differ. Equ. Conf. 15, 77–95 (2007)Google Scholar
  20. 20.
    R. Anguelov, J.M.S. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods PDE 17, 518–543 (2001)CrossRefGoogle Scholar
  21. 21.
    P.J. Olver, Nonlinear Ordinary Differential Equations (Prentice-Hall, Inc., Upper Saddle River, 2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsAnkara Yıldırım Beyazıt UniversityAnkaraTurkey
  2. 2.Mathematics Department, Arts and Science FacultyOndokuz Mayıs UniversityKurupelit, SamsunTurkey

Personalised recommendations