Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Superconducting Resonators with Niobium and \({\mathrm{YBa}_{2}\mathrm{Cu}_{3}O_{7-{\delta }}}\) for Alpha-Particle Detectors

Abstract

For high-energy particle detection at temperatures above 1 K, we investigated two superconducting films: niobium (Nb) and a high-temperature superconductor, namely \({\mathrm{YBa}}_2{\mathrm{Cu}}_3{\mathrm{O}}_{7-\delta }\) (YBCO). Lumped element kinetic inductance detectors (LeKID) were fabricated using both the superconducting films. The alpha line (5.49 MeV emitted by Am-241) was irradiated from the top side of the devices. We observed only a very rapid signal from the YBCO-based LeKID, which cannot be attributed to a quasiparticle response because it is much faster than the resonator ring time (\(\sim 1\,{\upmu }\)s). Although the quality factor and noise level of the YBCO-based device were comparable to those of the Nb-base LeKID, the signal was suppressed because of the large gap energy and short quasiparticle lifetime. The performance of the Nb-based LeKID was consistent with expectations: The energy resolution was 17, and the decay time was approximately 1 \({\upmu }\)s. We distinguished between direct absorption events and phonon-mediated events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J. Zmuidzinas, B.A. Mazin, A. Vayonakis, P.K. Day, H.G. LeDuc, AIP Conf. Proc. 1, 309–312 (2002)

  2. 2.

    S.J.C. Yates, J.J.A. Baselman, A. Endo, R.M.J. Janssen, L. Ferrari, P. Diener, A.M. Baryshev, Appl. Phys. Lett. 99, 073505 (2011). https://doi.org/10.1063/1.3624846

  3. 3.

    R.M.J. Janssen, J.J.A. Baselmans, A. Endo, L. Ferrari, S.J.C. Yates, A.M. Baryshe, T.M. Klapwijk, Appl. Phys. Lett. 103, 203503 (2013). https://doi.org/10.1063/1.4829657

  4. 4.

    J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015). https://doi.org/10.1063/1.4913418

  5. 5.

    J. Gao, M.R. Vissers, M.O. Sandberg, F.C.S. da Silva, S.W. Nam, D.P. Pappas, D.S. Wisbey, E.C. Langman, S.R. Meeker, B.A. Mazin, H.G. Leduc, J. Zmuidzinas, K.D. Irwin, Appl. Phys. Lett. 101, 142602 (2012). https://doi.org/10.1063/1.4756916

  6. 6.

    B.A. Mazin, B. Bumble, S.R. Meeker, Kn O’Brien, S. McHugh, E. Langman, Opt. Express 20(2), 1503 (2012)

  7. 7.

    B.A. Mazin, B. Bumble, Peter K. Day, Appl. Phys. Lett. 89, 222507 (2006). https://doi.org/10.1063/1.2390664

  8. 8.

    A. Miceli, T.W. Cecil, L. Gades, O. Quaranta, J. Low Temp. Phys. 176, 497–503 (2014). https://doi.org/10.1007/s10909-013-1033-0

  9. 9.

    M. Naruse, N. Miyamoto, T. Taino, H. Myoren, Phys. C 541, 36–39 (2017). https://doi.org/10.1007/s10909-013-1033-0

  10. 10.

    S. Golwala, J. Gao, D. Moore, B. Mazin, M. Eckart, B. Bumble, P. Day, H.G. LeDuc, J. Zmuidzinas, J. Low Temp. Phys. 151, 550–556 (2008). https://doi.org/10.1007/s10909-007-9687-0

  11. 11.

    M. Faverzani, P. Day, A. Nucciotti, E. Ferri, J. Low Temp. Phys. 167, 1041–1047 (2012). https://doi.org/10.1007/s10909-012-0538-2

  12. 12.

    S. Doyle, P. Mauskopf, J. Naylon, A. Porch, C. Duncombe, J. Low Temp. Phys. 151, 530–536 (2008). https://doi.org/10.1007/s10909-007-9685-2

  13. 13.

    A. Chakrabarty, M.A. Lindeman, B. Bumble, A.W. Kleinsassera, W.A. Holmes, D. Cunnane, Appl. Phys. Lett. 114, 132601 (2019). https://doi.org/10.1063/1.5089143

  14. 14.

    K. Sato, S. Ariyoshi, S. Negishi, S. Hashimoto, H. Mikami, K. Nakajima, S. Tanaka, J. Phys. Conf. Ser. 1054, 012053 (2018)

  15. 15.

    A. Ghirri, C. Bonizzoni, D. Gerace, S. Sanna, A. Cassinese, M. Affronte, Appl. Phys. Lett. 106, 184101 (2015). https://doi.org/10.1063/1.4920930

  16. 16.

    D.C. Moore, S.R. Golwala, B. Bumble, B. Cornell, P.K. Day, H.G. Du, J. Zmuidzinas, Appl. Phys. Lett. 100, 093508 (2012). https://doi.org/10.1063/1.4726279

  17. 17.

    L. Cardani et al., Appl. Phys. Lett. 107, 093508 (2015). https://doi.org/10.1063/1.4929977

  18. 18.

    A. Kozorezov, A. Volkov, J. Wigmore, A. Peacock, A. Poelaert, R. den Hartog, Phys. Rev. B Condens. Matter Mater. Phys. 61, 11807–11819 (2000)

  19. 19.

    J. Gao, Ph.D Diss. California Institute of Technology (2008)

  20. 20.

    A. Leo, G. Grimaldi, R. Citro, A. Nigro, S. Pace, Phys. Rev. B 84, 014536 (2011)

  21. 21.

    J.R. Comfort, J.F. Decker, E.T. Lynk, M.O. Scully, A.R. Quinton, Phys. Rev. 150, 249 (1966)

Download references

Acknowledgements

This work was supported in part by JSPS Grant-in-Aid for Young Scientists (A) 25706029.

Author information

Correspondence to M. Naruse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naruse, M., Ando, T., Waga, Y. et al. Superconducting Resonators with Niobium and \({\mathrm{YBa}_{2}\mathrm{Cu}_{3}O_{7-{\delta }}}\) for Alpha-Particle Detectors. J Low Temp Phys (2020). https://doi.org/10.1007/s10909-020-02373-x

Download citation

Keywords

  • LeKID
  • Phonon-mediated KID
  • Alpha ray