Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Complex Beam Mapping and Fourier Optics Analysis of a Wide-Field Microwave Kinetic Inductance Detector Camera

Abstract

For astronomical instruments, accurate knowledge of the optical pointing and coupling is essential to characterize the alignment and performance of (sub-)systems prior to integration and deployment. Ideally, this requires the phase response of the optical system, which for direct (phase insensitive) detectors was not previously accessible. Here, we show development of the phase-sensitive complex beam pattern technique using a dual optical source heterodyne technique for a large-field-of-view microwave kinetic inductance detector camera at 350 GHz. We show here how you can analyze the measured data with Fourier optics, which allows integration into a telescope model to calculate the on-sky beam pattern and telescope aperture efficiency prior to deployment at a telescope.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    A. Murphy et al., J. Instrum. 5, 4 (2010). https://doi.org/10.1088/1748-0221/5/04/T04001

  2. 2.

    D. Teyssier, N.D. Whyborn, W. Luinge, W. Jellema, J.W. Kooi, P. Dieleman, T.D. Graauw, in Proceedings of the 19th ISSTT (2008), pp. 132–139. http://library.nrao.edu/isstt/catalog/2008132139

  3. 3.

    C.Y.E. Tong et al., IEEE LMWC 13(6), 235 (2003). https://doi.org/10.1109/LMWC.2003.814602

  4. 4.

    J. Tervo, J. Turunen, Optics Commun. 209(1–3), 7 (2002). https://doi.org/10.1016/S0030-4018(02)01665-6

  5. 5.

    D.H. Martin, J.W. Bowen, IEEE. Trans. Microw. Theory Tech. 41(10), 1676 (1993). https://doi.org/10.1109/22.247911

  6. 6.

    M. Carter, et al., in Proceedings of the 13th ISSTT (2002), pp. 515 –524. http://library.nrao.edu/isstt/catalog/2002515524

  7. 7.

    W. Jellema, Optical design and performance verification of Herschel-HIFI. Ph.D. thesis, University of Groningen (2015). http://hdl.handle.net/11370/24e22068-b3ba-45d9-b72b-503e951b193f

  8. 8.

    M. Naruse et al., ExA 24(1–3), 89 (2009). https://doi.org/10.1007/s10686-008-9136-3

  9. 9.

    A.M. Baryshev et al., A&A 577, A129 (2015). https://doi.org/10.1051/0004-6361/201425529

  10. 10.

    P.K. Day et al., Nature 425, 6960 (2003). https://doi.org/10.1038/nature02037

  11. 11.

    K.K. Davis et al., IEEE Trans. THz Sci. Technol. 7(1), 98 (2017). https://doi.org/10.1109/TTHZ.2016.2617869

  12. 12.

    K.K. Davis et al., IEEE Trans. THz Sci. Technol. 9(1), 67 (2019). https://doi.org/10.1109/TTHZ.2018.2883820

  13. 13.

    L. Ferrari et al., IEEE Trans. THz Sci. Technol. 8(6), 572 (2018). https://doi.org/10.1109/TTHZ.2018.2871365

  14. 14.

    P.F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications. IEEE Press/Chapman & Hall Publishers series on microwave technology and RF Quasioptical systems (1998)

  15. 15.

    J.A. Murphy, Int. J. Infrared Milli. Waves 8(9), 1165 (1987). https://doi.org/10.1007/BF01010819

  16. 16.

    S.J.C. Yates et al., IEEE Trans. THz Sci. Technol. 7(6), 789 (2017). https://doi.org/10.1109/TTHZ.2017.2755500

  17. 17.

    M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41(31), 6543 (2002)

  18. 18.

    C.N. Thomas, S. Withington, I.E.E.E. Trans, IEEE Trans. THz. Sci. Technol. 2(1), 50 (2012). https://doi.org/10.1109/TTHZ.2011.2177693

  19. 19.

    J. van Rantwijk et al., IEEE Trans. Microw. Theory Tech. 64(6), 1876 (2016). https://doi.org/10.1109/TMTT.2016.2544303

  20. 20.

    K.K. Davis et al., Proc. SPIE 10708, 10708 (2018). https://doi.org/10.1117/12.2314383

  21. 21.

    J. Ruze, Proc. IEEE 54(4), 633 (1966). https://doi.org/10.1109/PROC.1966.4784

  22. 22.

    J.J.A. Baselmans et al., A&A 601, A89 (2017). https://doi.org/10.1051/0004-6361/201629653

  23. 23.

    A. Endo et al., Nat. Astron. (2019). https://doi.org/10.1038/s41550-019-0850-8

Download references

Acknowledgements

The authors thank Ronald Hesper for his contributions to the hardware system. K. Davis is currently supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1801983. This work was in part supported by ERC starting Grant ERC-2009-StG Grant 240602 TFPA. The contribution of J.J.A. Baselmans is also supported by the ERC consolidator Grant COG 648135 MOSAIC.

Author information

Correspondence to S. J. C. Yates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yates, S.J.C., Davis, K.K., Jellema, W. et al. Complex Beam Mapping and Fourier Optics Analysis of a Wide-Field Microwave Kinetic Inductance Detector Camera. J Low Temp Phys (2020). https://doi.org/10.1007/s10909-020-02352-2

Download citation

Keywords

  • Complex field mapping
  • Kinetic inductance detector
  • Optical characterization
  • Near- to far-field transformation
  • Gaussian beam analysis