Advertisement

Low-Noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors

  • A. JuillardEmail author
  • J. Billard
  • D. Chaize
  • J-B Filippini
  • D. Misiak
  • L. Vagneron
  • A. Cavanna
  • Q. Dong
  • Y. Jin
  • C. Ulysse
  • A. Bounab
  • X. de la Broise
  • C. Nones
  • A. Phipps
Article
  • 9 Downloads

Abstract

We present the noise performance of high electron mobility transistors (HEMT) developed by CNRS/C2N laboratory. Various HEMT’s gate geometries with 2 pF to 230 pF input capacitance have been studied at 4  K. A model for both voltage and current noises has been developed with frequency dependence up to 1  MHz. These HEMTs exhibit low dissipation, excellent noise performance and can advantageously replace traditional Si-JFETs for the readout of high impedance thermal sensor and semiconductor ionization cryogenic detectors. Our model predicts that cryogenic germanium detectors of 30  g with 10  eV heat and 20  eV\(_\mathrm{ee}\) baseline resolution are feasible if read out by HEMT-based amplifiers. Such resolution allows for high discrimination between nuclear and electron recoils at low threshold. This capability is of major interest for coherent elastic neutrino scattering and low-mass dark matter experiments such as Ricochet and EDELWEISS.

Keywords

HEMT Amplifier Cryoelectronics Dark matter Cryogenic detectors 

Notes

Acknowledgements

This work was supported by the LabEx Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon in the framework “Investissements d’Avenir” (ANR-11-IDEX-00007), by the Cross-Disciplinary Program on Instrumentation and Detection of CEA in the framework of the BASKET project and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement ERC-StG-CENNS 803079. We thank EDELWEISS and Ricochet collaborations for their help and useful discussion in performing this work.

References

  1. 1.
    E. Armengaud et al., Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. 12(08), P08010 (2017).  https://doi.org/10.1088/1748-0221/12/08/P08010 CrossRefGoogle Scholar
  2. 2.
    E. Armengaud et al., Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys. Lett. B 702, 329–335 (2011).  https://doi.org/10.1016/j.physletb.2011.07.034 ADSCrossRefGoogle Scholar
  3. 3.
    L. Hehn et al., Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. Eur. Phys. J. C 76, 548 (2016).  https://doi.org/10.1140/epjc/s10052-016-4388-y ADSCrossRefGoogle Scholar
  4. 4.
    R. Agnese et al., (SuperCDMS Collaboration), Results from the super cryogenic dark matter search experiment at Soudan. Phys. Rev. Lett. 120, 061802 (2018).  https://doi.org/10.1103/PhysRevLett.120.061802
  5. 5.
    R. Agnese et al., (SuperCDMS collaboration), Search for low-mass dark matter with CDMSlite using a profile likelihood fit. Phys. Rev. D 99, 062001 (2019).  https://doi.org/10.1103/PhysRevD.99.062001
  6. 6.
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 72, 1971 (2012).  https://doi.org/10.1140/epjc/s10052-012-1971-8 ADSCrossRefGoogle Scholar
  7. 7.
    G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 76, 25 (2016).  https://doi.org/10.1140/epjc/s10052-016-3877-3 ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017).  https://doi.org/10.1103/PhysRevLett.118.021303 ADSCrossRefGoogle Scholar
  9. 9.
    X. Cui et al., (PandaX-II Collaboration), Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett. 119, 181302 (2017).  https://doi.org/10.1103/PhysRevLett.119.181302
  10. 10.
    E. Aprile et al., (XENON Collaboration), Dark matter search results from a one ton-year exposure of XENON1T. Phys. Rev. Lett. 121, 111302 (2018).  https://doi.org/10.1103/PhysRevLett.121.111302
  11. 11.
    E. Armengaud et al., (EDELWEISS Collaboration), Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground. Phys. Rev. D 99, 082003 (2019).  https://doi.org/10.1103/PhysRevD.99.082003
  12. 12.
    Q. Arnaud et al., Optimizing EDELWEISS detectors for low-mass WIMP searches. Phys. Rev. D 97, 022003 (2018).  https://doi.org/10.1103/PhysRevD.97.022003 ADSCrossRefGoogle Scholar
  13. 13.
    R. Agnese et al., Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 95, 082002 (2017).  https://doi.org/10.1103/PhysRevD.95.082002 ADSCrossRefGoogle Scholar
  14. 14.
    Q. Arnaud et al., First results from the NEWS-G direct dark matter search experiment at the LSM. Astropart. Phys. 97, 54–62 (2018).  https://doi.org/10.1016/j.astropartphys.2017.10.009 ADSCrossRefGoogle Scholar
  15. 15.
    A. Aguilar-Arevalo et al., Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94, 082006 (2016).  https://doi.org/10.1103/PhysRevD.94.082006 ADSCrossRefGoogle Scholar
  16. 16.
    R. Agnese et al., First dark matter constraints from a SuperCDMS single-charge sensitive detector. Phys. Rev. Lett. 121, 051301 (2018).  https://doi.org/10.1103/PhysRevLett.121.051301 ADSCrossRefGoogle Scholar
  17. 17.
    J. Tiffenberg et al., Single-electron and single-photon sensitivity with a silicon skipper CCD. Phys. Rev. Lett. 119, 131802 (2017).  https://doi.org/10.1103/PhysRevLett.119.131802 ADSCrossRefGoogle Scholar
  18. 18.
    D. Akimov et al., (COHERENT Collaboration), Observation of coherent elastic neutrino-nucleus scattering. Science 357, 1123–1126 (2017).  https://doi.org/10.1126/science.aao0990 ADSCrossRefGoogle Scholar
  19. 19.
    J. Billard et al., Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex. J. Phys. G Nucl. Part. Phys. 44, 105101 (2017).  https://doi.org/10.1088/1361-6471/aa83d0 ADSCrossRefGoogle Scholar
  20. 20.
    G. Angloher et al., (NUCLEUS Collaboration), Exploring CEvNS with NUCLEUS at the Chooz nuclear power plant. https://arxiv.org/abs/1905.10258
  21. 21.
    G. Agnolet et al., Background studies for the MINER coherent neutrino scattering reactor experiment author links open overlay panel. Nucl. Instrum. Methods A 853, 53 (2017).  https://doi.org/10.1016/j.nima.2017.02.024 ADSCrossRefGoogle Scholar
  22. 22.
    Q. Dong et al., Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics. Appl. Phys. Lett. 105, 013504 (2014).  https://doi.org/10.1063/1.4887368 ADSCrossRefGoogle Scholar
  23. 23.
    Y. Jin et al., Ultra-low noise HEMTs for deep cryogenic low-frequency and high-impedance readout electronics, in 12th IEEE International conference on solid-state and integrated circuit technology (ICSICT) (2014).  https://doi.org/10.1109/ICSICT.2014.7021379
  24. 24.
  25. 25.
    A. Phipps et al., An HEMT-based cryogenic charge amplifier for sub-Kelvin semiconductor radiation detectors. J. Low Temp. Phys. 184, 897 (2016).  https://doi.org/10.1007/s10909-016-1475-2 CrossRefGoogle Scholar
  26. 26.
    B. Censier et al., EDELWEISS read-out electronics and future prospects. J. Low Temp. Phys. 167, 645 (2012).  https://doi.org/10.1007/s10909-012-0568-9 ADSCrossRefGoogle Scholar
  27. 27.
    A. Phipps et al., A HEMT-based cryogenic charge amplifier with sub-100 eVee ionization resolution for massive semiconductor dark matter detectors. Nucl. Inst. Methods Phys. Res. A 940, 181 (2019).  https://doi.org/10.1016/j.nima.2019.06.022 ADSCrossRefGoogle Scholar
  28. 28.
    X. de la Broise et al., Cryogenic low noise and low dissipation multiplexing electronics, using HEMT+SiGe ASICs, for the readout of high impedance sensors: new version. Nucl. Inst. Methods Phys. Res. A 787, 54 (2015).  https://doi.org/10.1016/j.nima.2014.11.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Juillard
    • 1
    Email author
  • J. Billard
    • 1
  • D. Chaize
    • 1
  • J-B Filippini
    • 1
  • D. Misiak
    • 1
  • L. Vagneron
    • 1
  • A. Cavanna
    • 2
  • Q. Dong
    • 2
  • Y. Jin
    • 2
  • C. Ulysse
    • 2
  • A. Bounab
    • 3
  • X. de la Broise
    • 3
  • C. Nones
    • 3
  • A. Phipps
    • 4
  1. 1.CNRS/IN2P3, IPN-LyonUniv. Lyon, Univ. Lyon 1VilleurbanneFrance
  2. 2.C2N, CNRSUniv. Paris-Sud, Univ. Paris-SaclayPalaiseauFrance
  3. 3.IRFU, CEAUniv Paris-SaclayGif-sur-YvetteFrance
  4. 4.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations