Study on Phonon Amplification of Neganov–Luke Light Detectors

  • J. A. JeonEmail author
  • H. L. Kim
  • I. Kim
  • S. G. Kim
  • S. R. Kim
  • T. S. Kim
  • Y. H. Kim
  • D. H. Kwon
  • H. J. Lee
  • J. H. Song
  • K. R. Woo


We report progress on the development of a light detector with Neganov–Luke (NL) phonon amplification. Double comb-like electrodes were fabricated on an intrinsic Si wafer to apply an electric field. A metallic magnetic calorimeter was used for a sensitive measurement of the temperature increase originating from the light absorption in the wafer and NL phonon amplification. The NL light detector was applied to the simultaneous detection of heat and light signals from a \(\hbox {ZnWO}_4\) scintillating crystal. Clear amplification of the light signals was obtained for various voltages applied to the electrodes, while no change in the heat signals was observed. The voltage dependence of the measured gain was investigated for a few efficiency parameters, such as the saturation voltage required to suppress the recombination of electron-hole pairs and the heat generation efficiency of the NL effect.


Low-temperature detectors Neutrinoless double-beta decay Phonon-amplified detectors Dark matter detection 



This research is supported by Grant no. IBS-R016-G1. The work at Kongju National Univ. is supported by the research grant of the Kongju National University in 2019.


  1. 1.
    R. Agnese et al., Phys. Rev. D 95, 082002 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    O. Azzolini et al., Phys. Rev. Lett. 120, 232502 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    V. Alenkov, P. Aryal, J. Beyer, et al., arXiv:1512.05957 (2015)
  5. 5.
    G.B. Kim et al., Astropart. Phys. 91, 105 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    F. Petricca et al., Nucl. Inst. Method A 520, 193–196 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    K. Schffner et al., Astropart. Phys. 69, 30–36 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N. Casali et al., Eur. Phys. J. C 75, 12 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    B. Neganov, V. Trofimov, USSR Patent No 1037771 146, 215 (1985)Google Scholar
  10. 10.
    P. Luke, J. Appl. Phys. 64, 6858–6860 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    C. Enss et al., J. Low Temp. Phys. 121, 137 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M. Willers et al., J. Inst. 10, P03003 (2015)Google Scholar
  13. 13.
    V. Novati et al., Nucl. Inst. Method A 912, 82–84 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    I. Kim et al., Supercond. Sci. Technol. 30, 094005 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Lee et al., Nucl. Inst. Method A 784, 508 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Y.H. Kim et al., Nucl. Inst. Method A 520, 208 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    G.B. Kim et al., J. Low Temp. Phys. 176, 637–643 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    V. Alenkov, H.W. Bae, J. Beyer et al., Eur. Phys. J. C 79, 791 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    H.L. Kim et al., IEEE TNS 65, 766–770 (2018)Google Scholar
  20. 20.
    H.L. Kim et al., Nucl. Inst. Meth. A, (2019) (in press)
  21. 21.
    H. Kraus et al., Phys. Lett. B 610, 37–44 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    V. Mikhelashvili et al., J. Appl. Phys. 122, 034503 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    D. McCammon, Cryogenic particle detection (Springer, New York, 2005), pp. 1–34Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Underground PhysicsInstitute for Basic Science (IBS)DaejeonKorea
  2. 2.Korea Research Institute of Standards and Science (KRISS)DaejeonKorea
  3. 3.Department of PhysicsKongju National UniversityGongjuKorea
  4. 4.University of Science and Technology (UST)DaejeonKorea
  5. 5.Photonic/Wireless Convergence Components DivisionETRIDaejeonKorea

Personalised recommendations