Advertisement

Time-Domain Modeling of TES Microcalorimeters Under AC Bias

  • C. KirschEmail author
  • L. Gottardi
  • M. Lorenz
  • T. Dauser
  • R. den Hartog
  • B. Jackson
  • P. Peille
  • S. Smith
  • J. Wilms
Article
  • 24 Downloads

Abstract

We present developments in the simulation of transition-edge sensor (TES) microcalorimeters under AC bias for the purpose of detector studies. The presented model extends the TES differential equation system by describing the TES as a resistively shunted junction, using the Josephson equations instead of a parametrized resistance. To demonstrate the performance of this model, we compare simulated and measured IV curves of a pixel characterized for the Athena X-ray Integral Field Unit and showcase the signal generated by a simulated X-ray pulse.

Keywords

Athena X-IFU TES FDM 

Notes

Acknowledgements

This research has made use of ISIS functions (ISISscripts) provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We thank John E. Davis for the development of the SLXfig module used to prepare the figures. This work has been funded by the Bundesministerium für Wirtschaft und Technologie under DLR Grant No. 50 QR 1903.

References

  1. 1.
    K. Nandra, D. Barret, X. Barcons, A. Fabian, J.-W. den Herder, L. Piro, M. Watson, C. Adami, J. Aird, J.M. Afonso et al., arXiv e-prints arXiv:1306.2307 (2013)
  2. 2.
    D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, M. Cappi, J. Houvelin, R. Kelley, J. M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rozanska, J. Wilms, S. Bandler, M. Barbera, X. Barcons, E. Bozzo, M. T. Ceballos, I. Charles, E. Costantini, A. Decourchelle, R. den Hartog, L. Duband, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G. W. Pratt, D. Prêle, L. Ravera, K. Sato, J. Schaye, K. Shinozaki, T. Thibert, L. Valenziano, V. Valette, J. Vink, N. Webb, M. Wise, N. Yamasaki, F. Douchin, J.-M. Mesnager, B. Pontet, A. Pradines, G. Branduardi-Raymont, E. Bulbul, M. Dadina, S. Ettori, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Kaastra, P. Mazzotta, J. Miller, G. Miniutti, Y. Naze, F. Nicastro, S. Scioritino, A. Simonescu, J. M. Torrejon, B. Frezouls, H. Geoffray, P. Peille, C. Aicardi, J. André, C. Daniel, A. Clénet, C. Etcheverry, E. Gloaguen, G. Hervet, A. Jolly, A. Ledot, I. Paillet, R. Schmisser, B. Vella, J.-C. Damery, K. Boyce, M. Dipirro, S. Lotti, D. Schwander, S. Smith, B.-J. Van Leeuwen, H. van Weers, N. Clerc, B. Cobo, T. Dauser, C. Kirsch, E. Cucchetti, M. Eckart, P. Ferrando, L. Natalucci, Proc. SPIE, SPIE Conf. Ser. 10699, 106991G (2018).  https://doi.org/10.1117/12.2312409
  3. 3.
    M. Lorenz, C. Kirsch, P.E. Merino-Alonso, P. Peille, T. Dauser, E. Cucchetti, S.J. Smith, J. Wilms, J. Low Temp. Phys. (2019) (This Special Issue)Google Scholar
  4. 4.
    J. Wilms, S.J. Smith, P. Peille, M.T. Ceballos, B. Cobo, T. Dauser, T. Brand, R.H. den Hartog, S.R. Bandler, J. de Plaa, J.W.A. den Herder, Proc. SPIE, SPIE Conf. Ser. 9905, 990564 (2016).  https://doi.org/10.1117/12.2234435
  5. 5.
    T. Dauser, S. Falkner, M. Lorenz, C. Kirsch, P. Peille, E. Cucchetti, C. Schmid, T. Brand, R. Smith, J. Wilms, A&A 630, A66 (2019).  https://doi.org/10.1051/0004-6361/201935978 ADSCrossRefGoogle Scholar
  6. 6.
    K.D. Irwin, G.C. Hilton, Transition-Edge Sensors, vol. 63 (Springer, Berlin, 2005).  https://doi.org/10.1007/10933596_3 CrossRefGoogle Scholar
  7. 7.
    H. Akamatsu, L. Gottardi, J. van der Kuur, C.P. de Vries, K. Ravensberg, J.S. Adams, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, C.A. Kilbourne, M. Kiviranta, A.J. van der Linden, B.D. Jackson, S.J. Smith, Proc. SPIE 9905, 99055S (2016).  https://doi.org/10.1117/12.2232805 CrossRefGoogle Scholar
  8. 8.
    J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104, 047003 (2010).  https://doi.org/10.1103/PhysRevLett.104.047003 ADSCrossRefGoogle Scholar
  9. 9.
    L. Gottardi, A. Kozorezov, H. Akamatsu, J. van der Kuur, M.P. Bruijn, R.H. den Hartog, R. Hijmering, P. Khosropanah, C. Lambert, A.J. van der Linden, M.L. Ridder, T. Suzuki, J.R. Gao, Appl. Phys. Let. 105, 162605 (2014).  https://doi.org/10.1063/1.4899065 ADSCrossRefGoogle Scholar
  10. 10.
    P. Brown, G. Byrne, A. Hindmarsh, SIAM J. Sci. Comput. 10, 1038 (1989).  https://doi.org/10.1137/0910062 CrossRefGoogle Scholar
  11. 11.
    T.-S. Wang, J.-K. Chen, X. Zhou, I.E.E.E. Trans, Appl. Supercond. 25, 2470668 (2015).  https://doi.org/10.1109/TASC.2015.2470668 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dr. Karl Remeis-Observatory & ECAPBambergGermany
  2. 2.SRON Netherlands Institute for Space ReseachUtrechtThe Netherlands
  3. 3.CNESToulouseFrance
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations