Advertisement

Flat Low-Loss Silicon Gradient Index Lens for Millimeter and Submillimeter Wavelengths

  • F. DefranceEmail author
  • C. Jung-Kubiak
  • S. Rahiminejad
  • T. Macioce
  • J. Sayers
  • J. Connors
  • S. J. E. Radford
  • G. Chattopadhyay
  • S. R. Golwala
Article
  • 29 Downloads

Abstract

We present the design, simulation, and planned fabrication process of a flat high resistivity silicon gradient index (GRIN) lens for millimeter and submillimeter wavelengths with very low absorption losses. The gradient index is created by sub wavelength holes whose size increases with the radius of the lens. The effective refractive index created by the subwavelength holes is constant over a very wide bandwidth, allowing the fabrication of achromatic lenses up to submillimeter wavelengths. The designed GRIN lens was successfully simulated and shows an expected efficiency better than that of a classic silicon plano-concave spherical lens with approximately the same thickness and focal length. Deep reactive ion etching (DRIE) and wafer-bonding of several patterned wafers will be used to realize our first GRIN lens prototype.

Keywords

Lens Gradient index Silicon GRIN Subwavelength DRIE THz 

Notes

Acknowledgements

This work was funded by NASA (Grant NNX15AE01G). The Caltech/JPL President’s and Director’s Research Fund proposal was recently successful and will allow us to continue this work. SBIR and APRA proposals are currently under review.

References

  1. 1.
    D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 21, 1379–1386 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    V.V. Parshin, R. Heidinger, B.A. Andreev, A.V. Gusev, V.B. Shmagin, Silicon as an advanced window material for high power gyrotrons. Int. J. Infrared Millim. Waves 16, 863–877 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yagvesson, An anti-reflection coating for silicon optics at terahertz frequencies. IEEE Microw. Guid. Wave Lett. 10, 264–266 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Lau, J. Fowler, T. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollack, M. Halpern, D. Marsden, G. Marsden, Millimeter-wave antireflection coating for cryogenic silicon lenses. Appl. Opt. 45, 3746–3751 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    R. Datta, C.D. Munson, M.D. Niemack, J.J. McMahon, J. Britton, E.J. Wollack, J. Beall, M.J. Devlin, J. Fowler, P. Gallardo, J. Hubmayr, K. Irwin, L. Newburgh, J.P. Nibarger, L. Page, M.A. Quijada, B.L. Schmitt, S.T. Staggs, R. Thornton, L. Zhang, Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths. Appl. Opt. 52, 8747–8758 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Gallardo, B.J. Koopman, N.F. Cothard, S.M.M. Bruno, G. Cortes-Medellin, G. Marchetti, K.H. Miller, B. Mockler, M.D. Niemack, G. Stacey, E.J. Wollack, Deep reactive ion etched anti-reflection coatings for sub-millimeter silicon optics. Appl. Opt. 56, 2796 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    J.D. Wheeler, B. Koopman, P. Gallardo, P.R. Maloney, S. Brugger, G. Cortes-Medellin, R. Datta, C.D. Dowell, J. Glenn, S. Golwala, C. McKenney, J.J. McMahon, C.D. Munson, M. Niemack, S. Parshley, G. Stacey, Antireflection coatings for submillimeter silicon lenses, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, vol. 9153 of Proceedings of SPIE, p. 91532Z, (July 2014)Google Scholar
  9. 9.
    T. Wada, H. Makitsubo, M. Mita, Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics. Appl. Phys. Express 3, 102503 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Wagner-Gentner, U.U. Graf, D. Rabanus, K. Jacobs, Low loss THz window. Infrared Phys. Technol. 48, 249–253 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    K.-F. Schuster, N. Krebs, Y. Guillaud, F. Mattiocco, M. Kornberg, A. Poglitsch, Micro-machined quasi-optical Elements for THz Applications, in Sixteenth International Symposium on Space Terahertz Technology, (2005), pp. 524–528Google Scholar
  12. 12.
    F. Defrance, C. Jung-Kubiak, J. Sayers, J. Connors, C. de Young, M.I. Hollister, H. Yoshida, G. Chattopadhyay, S.R. Golwala, S.J.E. Radford, 1.6:1 bandwidth two-layer antireflection structure for silicon matched to the 190–310 ghz atmospheric window. Appl. Opt. 57, 5196–5209 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Q.-Y. Tong, U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, New York, 1999)Google Scholar
  14. 14.
    U. Gosele, Q.-Y. Tong, Semiconductor wafer bonding. Annu. Rev. Mater. Sci. 28, 215–241 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    T. Suni, Direct wafer bonding for MEMS and microelectronics, vol. 609 VTT Publications, Espoo, Finland, 2006. Ph. D. thesisGoogle Scholar
  16. 16.
    H. Makitsubo, T. Wada, H. Kataza, MakotoMita, T. Suzuki, K. Yamamoto, Fabrication and analysis of three-layer all-silicon interference optical filter with sub-wavelength structure toward high performance terahertz optics. J. Infrared Millim. Terahertz Waves 38, 206–214 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Tang, Fabrication of high aspect ratio microstructures using time multiplexed reactive ion etching, Master’s thesis, Aalborg University, Institute of Physics and Nanotechnology, (2015)Google Scholar
  18. 18.
    S.-G. Park, K. Lee, D. Han, J. Ahn, K.-H. Jeong, Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial. Appl. Phys. Lett. 105(9), 091101 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Brincker, P. Karlsen, E. Skovsen, T. Sødergaard, Microstructured gradient-index lenses for thz photoconductive antennas. AIP Adv. 6(2), 025015 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    P. Moseley, G. Savini, E. Saenz, J. Zhang, P.A.R. Ade, Detailed characterization of a lenster—a mm-wave flat lens. IEEE Trans. Antennas Propag. 67, 3178–3184 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    T. Macioce, F. Defrance, C. Jung-Kubiak, S. Rahiminejad, J. Sayers, J. Connors, G. Chattopadhyay, S. Radford, S. Golwala, Multilayer etched antireflective structures for silicon vacuum windows. J. Low Temp. Phys. This Special Issue (2019)Google Scholar
  22. 22.
    D.H. Morris, R.G. Michael, Antireflection structured surfaces for the infrared spectral region. Appl. Opt. 32(7), 1154–1167 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    C. Jung-Kubiak, T.J. Reck, J.V. Siles, R. Lin, C. Lee, J. Gill, K. Cooper, I. Mehdi, G. Chattopadhyay, A multistep DRIE process for complex terahertz waveguide components. IEEE Trans. Terahertz Sci. Technol. 6, 690–695 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Physics, Mathematics, and AstronomyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Smithsonian Astrophysical ObservatorySubmillimeter ArrayHiloUSA

Personalised recommendations