Dopants Effect on Dielectric Response of (CuTl)0.5Ba2(CaMg)Cu3−xAxO10−δ Superconducting Phase
- 6 Downloads
Abstract
(CuTl)0.5Ba2(CaMg)Cu3−xAxO10−δ; (x = 0 and 1.5, A = Zn, Ni and Cd) superconducting phase was prepared by a two-step solid-state reaction. X-rays diffraction spectra confirmed the orthorhombic crystal structure of this phase. The ac-conduction mechanism in (CuTl)0.5Ba2(CaMg)Cu3−xAxO10−δ phase was explored via dielectric measurements in the frequency range from 40 Hz to 100 MHz at different temperatures from 77 to 287 K, respectively. The maximum values of the real part of the dielectric constant (\( \varepsilon_{{r({{\rm Max}} .)}}^{\prime } \)) and imaginary part of the dielectric constant (\( \varepsilon_{{r({{\rm Max}} .)}}^{\prime \prime } \)) at 40 Hz were increased with Zn and Cd doping, and their values were slightly decreased with Ni doping at Cu sites in CuO2 planes as compared to the undoped pure (CuTl)0.5Ba2(CaMg)Cu3O10−δ sample. But, a decreasing trend was observed in the values of \( \varepsilon_{{r({{\rm Max}} .)}}^{\prime } \) in Zn- and Cd-doped samples and an increasing trend was observed in the values of \( \varepsilon_{{r({{\rm Max}} .)}}^{\prime } \) in Ni-doped and pure samples with increase in temperature, while the opposite trend was observed with increasing temperature in the values of \( \varepsilon_{{r({{\rm Max}} .)}}^{\prime \prime } \) with respective dopants. The overall decrease in the maximum values of the tangent loss (tanδ) factor was observed in all doped samples as compared to the undoped pure sample. The maximum value of tanδ was increased in Zn- and Cd-doped samples and was decreased in pure and Ni-doped samples with increase in temperature. The maximum values of ac-conductivity {σac(Max.) (Ω cm)−1} were increased with Zn and Cd doping, and their values were slightly decreased with Ni doping at Cu sites in CuO2 planes as compared to the undoped pure sample. The values of σac(Max.) (Ω cm)−1 were observed to increase with increase in temperature in all the samples.
Keywords
(CuTl)0.5Ba2(CaMg)Cu3−xAxO10−δ superconducting phase Doping Ac-conduction Dielectric measurementsNotes
References
- 1.C. Park, R.L. Synder, Structures of high temperature cuprate superconductors. J. Am. Ceram. Soc. 78, 3171 (1995)CrossRefGoogle Scholar
- 2.M. Karppinen, H. Yamauchi, Y. Morita, M. Kitabatake, T. Motosahi, R.S. Lu, J.M. Lee, J.M. Chen, Hole concentration in the three-CuO2-plane copper-oxide superconductor Cu-1223. J. Phys. Chem. Solids 177, 1037 (2004)Google Scholar
- 3.J. Orenstein, A.J. Millis, Advances in the physics of high-temperature superconductivity. Science 288, 468 (2000)ADSCrossRefGoogle Scholar
- 4.T.H. Geballe, Paths to higher temperature superconductors. Science 259, 1501 (1993)Google Scholar
- 5.A. Gupta, R. Lal, A. Sedky, A.V. Narlikar, V.P.S. Awana, Correlation between superconducting critical temperature and normal-state resistivity parameters from the codoped ErBa2Cu3−x−yZnxFeyO7−δ system. Phys. Rev. B 61, 11752 (2000)ADSCrossRefGoogle Scholar
- 6.Y. Shimakawa, J.D. Jorgensen, T. Manako, Y. Kubo, Overdoped metals in the Tl2Ba2CuO6+δ and TlSr2CaCu2O7−δ systems. Phys. Rev. B 50, 16033 (1994)ADSCrossRefGoogle Scholar
- 7.N.A. Khan, A.A. Khuram, M. Mazhar, Effects of post-annealing on the infrared active phonon modes of low anisotropy (γ = 5–11) Cu1−xTlxBa2Ca2Cu3O10−δ superconductor thin films. Physica C 407, 23 (2004)ADSCrossRefGoogle Scholar
- 8.H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, K. Tokiwa, T. Watanabe, Mechanism of Tc enhancement in Cu1−xTlx-1234 and -1223 system with Tc > 130 K. Physica C 341–348, 487 (2002)Google Scholar
- 9.N.A. Khan, M. Mumtaz, A.A. Khurram, Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2(Cu3−yZny)O10−δ (y = 0, 1.0, 1.5, 2.0, 2.5) superconductors. J. Appl. Phys. 104, 033916 (2008)ADSCrossRefGoogle Scholar
- 10.M. Mumtaz, N.A. Khan, Dielectric response of Cu0.5Tl0.5Ba2(Ca2−yMgy)(Cu0.5Zn2.5)O10−δ bulk superconductor to frequency and temperature. Physica C 469, 182 (2009)ADSCrossRefGoogle Scholar
- 11.M. Mumtaz, M. Touqeer, M.N. Khan, Effects of MnFe2O4 nanoparticles on dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconducting phase. J. Mater. Sci. Mater. Electr. 29, 17341 (2018)CrossRefGoogle Scholar
- 12.P.B. Ishai, E. Sader, Yu. Feldman, I. Felner, M. Weger, Dielectric properties of Na0.7CoO2 and of the superconducting Na0.3CoO2·1.3H2O. J. Supercond. 18, 455 (2005)ADSCrossRefGoogle Scholar
- 13.C.M. Rey, H. Mathias, L.R. Testardi, S. Skirius, High dielectric constant and nonlinear electric response in nonmetallic YBa2Cu3O6+δ. Phys. Rev. B 45, 10639 (1992)ADSCrossRefGoogle Scholar
- 14.R.K. Nkum, M.O. Gyekye, F. Boakye, Normal-state dielectric and transport properties of In-doped Bi–Pb–Sr–Ca–Cu–O. Solid State Commun. 122, 569 (2002)ADSCrossRefGoogle Scholar
- 15.J. Konopka, R. Jose, M. Wołcyrz, Structural and dielectric properties of Ba2YbTaO6, Ba2YSbO6 and Ba2EuZrO5.5. Physica C 435, 53 (2006)ADSCrossRefGoogle Scholar
- 16.J.B. Shi, Y. Hsu, C.T. Lin, Dielectric properties of Gd2CuO4. Physica C 299, 272 (1998)ADSCrossRefGoogle Scholar
- 17.X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ. Physica C 417, 166 (2005)ADSCrossRefGoogle Scholar
- 18.J.W. Chen, J.C. Wang, Y.F. Chen, Study of dielectric relaxation behavior in Nd2CuO4. Physica C 289, 131 (1997)ADSCrossRefGoogle Scholar
- 19.C.C. Wang, Y.M. Cui, G.L. Xie, C.P. Chen, L.W. Zhang, Phase separation in La2CuO4+y ceramics probed by dielectric measurements. Phys. Rev. B 72, 064513 (2005)ADSCrossRefGoogle Scholar
- 20.J.B. Shi, Dielectric studies in T* and T/structures of (La, Gd)2CuO4. Physica C 305, 35 (1998)ADSCrossRefGoogle Scholar
- 21.G.P. Mazzara, S. Skirius, G. Cao, G. Chern, R.J. Clark, J.E. Crow, H. Mathias, J.W.O. Reilly, L.R. Testardi, High dielectric permittivity of ceramic and single-crystal PrBa2Cu3Ox. Phys. Rev. B 47, 8119 (1993)ADSCrossRefGoogle Scholar
- 22.S. Cavdar, H. Koralay, N. Tugluoglu, A. Gunen, Frequency-dependent dielectric characteristics of Tl-Ba-Ca-Cu-O bulk superconductor. Supercond. Sci. Technol. 18, 1204 (2005)ADSCrossRefGoogle Scholar
- 23.M. Mumtaz, M. Waqee-ur-Rehman, Y. Slimani, N.A. Khan, Jahn-Teller distortions and infield superconductivity of CuTl-1223 phase. J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-05201-w CrossRefGoogle Scholar
- 24.M. Mumtaz, N.A. Khan, S. Khan, Study of dielectric properties of oxygen post-annealed Cu0.5Tl0.5Ba2Ca2(Cu3−yMy)O10−δ superconductor. IEEE Trans. Appl. Supercond. 23, 8800108 (2013)ADSCrossRefGoogle Scholar
- 25.M.N. Kamalasanan, N.D. Kumar, S. Chandra, Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol–gel process. J. Appl. Phys. 74, 5679 (1993)ADSCrossRefGoogle Scholar
- 26.K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
- 27.C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
- 28.S. Cavdar, H. Koralay, S. Altindal, Effect of vanadium substitution on the dielectric properties of glass ceramic Bi-2212 superconductor. J. Low Temp. Phys. 164, 102 (2011)ADSCrossRefGoogle Scholar
- 29.A.M. Badr, H.A. Elshaikh, I.M. Ashraf, Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. Mod. Phys. 2, 12 (2011)CrossRefGoogle Scholar
- 30.M.W. Barsoum, Fundamentals of ceramics (McGraw-Hill, New York, 1997)Google Scholar
- 31.S.N. Khan, A.N.S. Saqib, M. Arshad, S. Atiq, S. Naseem, Structurally modulated dielectric relaxation in rhombohedral Cr2O3 mediated by Mn addition. J. Mater. Sci. Mater. Electr. 30, 3378 (2019)CrossRefGoogle Scholar
- 32.M. Elkestawy, AC conductivity and dielectric properties of, Zn1−xCuxCr0.8Fe1.2O4 spinel ferrites. J. Alloys Compd. 492, 616 (2010)CrossRefGoogle Scholar
- 33.D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim, Y.K. Lee, Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J. Magn. Magn. Mater. 293, 320 (2005)ADSCrossRefGoogle Scholar
- 34.N. Shukla, D.K. Dwivedi, Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys. J. Asian Ceram. Soc. 4, 178 (2016)CrossRefGoogle Scholar
- 35.Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Structural and complex impedance spectroscopic studies of Mg-substituted CoFe2O4. Ceram. Int. 42, 18271 (2016)CrossRefGoogle Scholar
- 36.S. Bhat, S.K. Khosa, P.N. Kotru, R.P. Tandon, Dielectric studies of lanthanum heptamolybdate crystals grown from gels. Mater. Sci. Eng. B 30, 7 (1995)CrossRefGoogle Scholar
- 37.A.K. Verma, P. Chandra, N. Kumar, A. Srivastava, R.K. Shukla, Conduction mechanism and charge transporting property of Te90−xSe10Cdx chalcogenides by ac-conductivity and dielectric analysis. Mater. Today Proc. 5, 9041 (2018)CrossRefGoogle Scholar
- 38.M. Imran, M. Mumtaz, M. Naveed, M.N. Khan, Role of Co3O4 nanoparticles in dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconducting phase. J. Low Temp. Phys. 192, 201 (2018)ADSCrossRefGoogle Scholar
- 39.M. Mumtaz, N.A. Khan, S. Khan, Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2(Cu3−yMy)O10-δ superconductor. J. Appl. Phys. 111, 013920 (2012)ADSCrossRefGoogle Scholar