Advertisement

Development of Microwave Kinetic Inductance Detectors for IR Single-Photon Counting

  • R. MezzenaEmail author
  • M. Faverzani
  • E. Ferri
  • A. Giachero
  • B. Margesin
  • A. Nucciotti
  • A. Puiu
  • A. Vinante
Article
  • 13 Downloads

Abstract

We have developed microwave kinetic inductance detectors suitable for near-IR single-photon counting. Our films are made of titanium and titanium nitride, deposited in a multilayer structure Ti/TiN/Ti/TiN with a total thickness of 44 nm. The film has a transition temperature of 1.2 K and a surface kinetic inductance of 34 pH/sq. The resonator was designed with lumped elements and consists of two blocks of interdigitated capacitors connected by a meandered stripe inductor. The resonator resonance frequency is 6.8 GHz, and the internal quality factor is 125,000. The detector is read out with the usual homodyne scheme and calibrated with light pulses produced by a laser diode with wavelength 1550 nm. For the 0- and 1-photon peaks, we measure a FWHM energy resolution of 0.44 eV and 0.56 eV, respectively. This resolution is sufficient to resolve events with up to 4 photons.

Keywords

Microwave kinetic inductance detectors Single-photon detector Ti/TiN multilayer films 

Notes

Acknowledgements

This work is carried out in the framework of the KIDS R&D project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy, in the Commissione Scientifica Nazionale 5 (CSN5). We acknowledge G. Fontana for his valuable support.

References

  1. 1.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  2. 2.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  3. 3.
    J. Gao, M.R. Vissers, M.O. Sandberg, F.C.S. da Silva, S.W. Nam, D.P. Pappas, D.S. Wisbey, E.C. Langman, S.R. Meeker, B.A. Mazin, H.G. Leduc, J. Zmuidzinas, K.D. Irwin, Appl. Phys. Lett. 101, 142602 (2012).  https://doi.org/10.1063/1.4756916 ADSCrossRefGoogle Scholar
  4. 4.
    W. Guo, X. Liu, Y. Wang, Q. Wei, L.F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M.R. Vissers, J. Gao, Appl. Phys. Lett. 110, 212601 (2017).  https://doi.org/10.1063/1.4984134 ADSCrossRefGoogle Scholar
  5. 5.
    A. Giachero, P. Day, P. Falferi, M. Faverzani, E. Ferri, C. Giordano, B. Margesin, F. Mattedi, R. Mezzena, R. Nizzolo, A. Nucciotti, J. Low Temp. Phys. 176, 155 (2014).  https://doi.org/10.1007/s10909-013-1078-0 ADSCrossRefGoogle Scholar
  6. 6.
    B.A. Mazin, B. Bumble, S.R. Meeker, K. O’Brien, S. McHugh, E. Langman, Opt. Express 20, 1503 (2012).  https://doi.org/10.1364/OE.20.001503 ADSCrossRefGoogle Scholar
  7. 7.
    M. Jönsson, G. Björk, Phys. Rev. A 99, 043822 (2019).  https://doi.org/10.1103/PhysRevA.99.043822 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di TrentoPovo, TrentoItaly
  2. 2.INFN - TIFPA Trento Institute for Fundamentals Physics and ApplicationsTrentoItaly
  3. 3.Dipartimento di FisicaUniversità di Milano-BicoccaMilanItaly
  4. 4.INFN Sezione di Milano BicoccaMilanItaly
  5. 5.Fondazione Bruno Kessler (FBK)Povo, TrentoItaly
  6. 6.CNR - Istituto di Fotonica e NanotecnologiePovo, TrentoItaly
  7. 7.Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK

Personalised recommendations